Advertisement

Comparison of Covered Laser-cut and Braided Respiratory Stents: From Bench to Pre-Clinical Testing

  • Anja Lena Thiebes
  • Donnacha J. McGrath
  • Nicola Kelly
  • Caoimhe A. Sweeney
  • Kathrin Kurtenbach
  • Valentine N. Gesché
  • Johanna Clauser
  • Barry O’Brien
  • Mark Bruzzi
  • Peter E. McHugh
  • Stefan JockenhoevelEmail author
  • Christian G. Cornelissen
Article
  • 50 Downloads

Abstract

Lung cancer patients often suffer from severe airway stenosis, the symptoms of which can be relieved by the implantation of stents. Different respiratory stents are commercially available, but the impact of their mechanical performance on tissue responses is not well understood. Two novel laser-cut and hand-braided nitinol stents, partially covered with polycarbonate urethane, were bench tested and implanted in Rhön sheep for 6 weeks. Bench testing highlighted differences in mechanical behavior: the laser-cut stent showed little foreshortening when crimped to a target diameter of 7.5 mm, whereas the braided stent elongated by more than 50%. Testing also revealed that the laser-cut stent generally exerted higher radial resistive and chronic outward forces than the braided stent, but the latter produced significantly higher radial resistive forces at diameters below 9 mm. No migration was observed for either stent type in vivo. In terms of granulation, most stents exerted a low to medium tissue response with only minimal formation of granulation tissue. We have developed a mechanical and in vivo framework to compare the behavior of different stent designs in a large animal model, providing data, which may be employed to improve current stent designs and to achieve better treatment options for lung cancer patients.

Keywords

Stent development Airway stenting Animal trial Sheep model Nitinol stent 

Notes

Acknowledgments

The authors thank the Institute of Laboratory Animal Science (RWTH Aachen University Hospital) headed by Prof. Dr. René H. Tolba, especially Dr. Kira Scherer, Lisa Liebenstund, Dunja Sieger and Thaddäus Stopinski, as well as Irina Appel (BioTex) for technical help in thin section cutting. We thank Dr. Richard M. Twyman for manuscript editing. This work was financially supported by the European Union Seventh Framework Program (FP7/2007-2013 under grant agreement number NMP3-SL-2012-280915). Funding from the College of Engineering and Informatics at NUI Galway through a College Scholarship is also acknowledged, along with funding support provided by the Structured Ph.D. Program in Biomedical Engineering and Regenerative Medicine (BMERM). Funded under the Program for Research in Third-Level Institutions (PRTLI) Cycle 5 (Strand 2) and co-funded under the European Regional Development Fund (ERDF).

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

References

  1. 1.
    Chaure, J., C. Serrano, R. Fernandez-Parra, E. Pena, F. Lostale, M. A. De Gregorio, M. A. Martinez, and M. Malve. On studying the interaction between different stent models and rabbit tracheal tissue: numerical, endoscopic and histological comparison. Ann. Biomed. Eng. 44:368–381, 2016.CrossRefGoogle Scholar
  2. 2.
    Chen, W., J. Clauser, A. L. Thiebes, D. J. McGrath, P. E. McHugh, U. Steinseifer, S. Jockenhoevel, W. E. Hennink, and R. J. Kok. Selection and fabrication of a non-woven polycarbonate urethane cover for a tissue engineered airway stent. Int. J. Pharm. 514:255–262, 2016.CrossRefGoogle Scholar
  3. 3.
    Duerig, T. W., D. E. Tolomeo, and M. Wholey. An overview of superelastic stent design. Minim. Invasive Ther. Allied Technol. 9:235–246, 2000.CrossRefGoogle Scholar
  4. 4.
    Fortin, M., P. MacEachern, C. A. Hergott, A. Chee, E. Dumoulin, and A. Tremblay. Self-expandable metallic stents in nonmalignant large airway disease. Can. Respir. J. 22:235–236, 2015.CrossRefGoogle Scholar
  5. 5.
    Freitag, L. Airway stents. In: European Respiratory Monograph 48: Interventional Pulmonology, edited by J. Strausz, and C. T. Bolliger. Sheffield: European Respiratory Society Publications, 2010, pp. 190–217.CrossRefGoogle Scholar
  6. 6.
    Kastner, S. B. A2-agonists in sheep: a review. Vet. Anaesth. Analg. 33:79–96, 2006.CrossRefGoogle Scholar
  7. 7.
    Kurtenbach, K. Process selection for manufacturing metallic airway stents [Dissertation]. RWTH Aachen University, 2017.Google Scholar
  8. 8.
    Malve, M., C. Serrano, E. Pena, R. Fernandez-Parra, F. Lostale, M. A. De Gregorio, and M. A. Martinez. Modelling the air mass transfer in a healthy and a stented rabbit trachea: CT-images, computer simulations and experimental study. Int. Commun. Heat Mass 53:1–8, 2014.CrossRefGoogle Scholar
  9. 9.
    McGrath, D. J., B. O’Brien, M. Bruzzi, and P. E. McHugh. Nitinol stent design—understanding axial buckling. J. Mech. Behav. Biomed. Mater. 40:252–263, 2014.CrossRefGoogle Scholar
  10. 10.
    McGrath, D. J., B. O’Brien, M. Bruzzi, N. Kelly, J. Clauser, U. Steinseifer, and P. E. McHugh. Evaluation of cover effects on bare stent mechanical response. J. Mech. Behav. Biomed. Mater. 61:567–580, 2016.CrossRefGoogle Scholar
  11. 11.
    McGrath, D. J., A. L. Thiebes, C. G. Cornelissen, M. B. O’Shea, B. O’Brien, S. Jockenhoevel, M. Bruzzi, and P. E. McHugh. An ovine in vivo framework for tracheobronchial stent analysis. Biomech. Model. Mechanobiol. 16:1535–1553, 2017.CrossRefGoogle Scholar
  12. 12.
    National Research Council Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals, 8th ed. Washington, DC: National Academies Press, 2011.Google Scholar
  13. 13.
    O’Brien, B., and M. Bruzzi. Shape memory alloys for use in medicine. In: Comprehensive Biomaterials1st, edited by P. Ducheyne. Amsterdam: Elsevier, 2011, pp. 49–72.CrossRefGoogle Scholar
  14. 14.
    O’Brien, B., E. O’Cearbhaill, and M. Bruzzi. A stent with customizable length for treatment of critical limb ischemia: clinical need, device development and pre-clinical testing. Cardiovasc. Eng. Technol. 5:317–333, 2014.CrossRefGoogle Scholar
  15. 15.
    Ost, D. E., A. M. Shah, X. Lei, M. C. B. Godoy, C. A. Jimenez, G. A. Eapen, P. Jani, A. J. Larson, M. G. Sarkiss, and R. C. Morice. Respiratory infections increase the risk of granulation tissue formation following airway stenting in patients with malignant airway obstruction. Chest 141:1473–1481, 2012.CrossRefGoogle Scholar
  16. 16.
    Saad, C. P., S. Murthy, G. Krizmanich, and A. C. Mehta. Self-expandable metallic airway stents and flexible bronchoscopy: long-term outcomes analysis. Chest 124:1993–1999, 2003.CrossRefGoogle Scholar
  17. 17.
    Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9:671–675, 2012.CrossRefGoogle Scholar
  18. 18.
    Serrano, C., F. Lostale, F. Rodriguez-Panadero, I. Blas, A. Laborda, and M. A. de Gregorio. Tracheal self-expandable metallic stents: a comparative study of three different stents in a rabbit model. Arch. Bronconeumol. 52:123–130, 2016.CrossRefGoogle Scholar
  19. 19.
    Shabalovskaya, S. A. On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Bio-Med. Mater. Eng. 6:267–289, 1996.Google Scholar
  20. 20.
    Thiebes, A. L., N. Kelly, C. A. Sweeney, D. J. McGrath, J. Clauser, K. Kurtenbach, V. N. Gesche, W. Chen, R. J. Kok, U. Steinseifer, M. Bruzzi, B. J. O’Brien, P. E. McHugh, S. Jockenhoevel, and C. G. Cornelissen. Pulmostent: in vitro to in vivo evaluation of a tissue engineered endobronchial stent. Ann. Biomed. Eng. 45:873–883, 2017.CrossRefGoogle Scholar
  21. 21.
    Wang, W. Q., D. K. Liang, D. Z. Yang, and M. Qi. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. J. Biomech. 39:21–32, 2006.CrossRefGoogle Scholar
  22. 22.
    Whittaker, D. R., and M. F. Fillinger. The engineering of endovascular stent technology: a review. Vasc. Endovasc. Surg. 40:85–94, 2006.CrossRefGoogle Scholar
  23. 23.
    Wood, D. E., Y. H. Liu, E. Vallieres, R. Karmy-Jones, and M. S. Mulligan. Airway stenting for malignant and benign tracheobronchial stenosis. Ann. Thorac. Surg. 76:167–172; discussion 173–164, 2003.Google Scholar
  24. 24.
    Youssef, G., W. A. Wallace, M. P. Dagleish, C. Cousens, and D. J. Griffiths. Ovine pulmonary adenocarcinoma: a large animal model for human lung cancer. ILAR J. 56:99–115, 2015.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • Anja Lena Thiebes
    • 1
  • Donnacha J. McGrath
    • 2
  • Nicola Kelly
    • 2
  • Caoimhe A. Sweeney
    • 2
  • Kathrin Kurtenbach
    • 3
  • Valentine N. Gesché
    • 3
  • Johanna Clauser
    • 4
  • Barry O’Brien
    • 2
  • Mark Bruzzi
    • 2
  • Peter E. McHugh
    • 2
  • Stefan Jockenhoevel
    • 1
    Email author
  • Christian G. Cornelissen
    • 1
    • 5
  1. 1.Department of Biohybrid & Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz InstituteRWTH Aachen UniversityAachenGermany
  2. 2.Biomechanics Research Centre, Biomedical Engineering, College of Engineering and InformaticsNational University of IrelandGalwayIreland
  3. 3.Institute for Textile EngineeringRWTH Aachen UniversityAachenGermany
  4. 4.Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz InstituteRWTH Aachen UniversityAachenGermany
  5. 5.Clinic for Pneumology and Internistic Intensive Medicine (Medical Clinic V), Medical FacultyRWTH Aachen UniversityAachenGermany

Personalised recommendations