Advertisement

Annals of Biomedical Engineering

, Volume 47, Issue 7, pp 1523–1538 | Cite as

Reproducibility and Repeatability of Five Different Technologies for Bar Velocity Measurement in Resistance Training

  • Javier Courel-Ibáñez
  • Alejandro Martínez-Cava
  • Ricardo Morán-Navarro
  • Pablo Escribano-Peñas
  • Javier Chavarren-Cabrero
  • Juan José González-Badillo
  • Jesús G. PallarésEmail author
Article

Abstract

This study aimed to analyze the agreement between five bar velocity monitoring devices, currently used in resistance training, to determine the most reliable device based on reproducibility (between-device agreement for a given trial) and repeatability (between-trial variation for each device). Seventeen resistance-trained men performed duplicate trials against seven increasing loads (20-30-40-50-60-70-80 kg) while obtaining mean, mean propulsive and peak velocity outcomes in the bench press, full squat and prone bench pull exercises. Measurements were simultaneously registered by two linear velocity transducers (LVT), two linear position transducers (LPT), two optoelectronic camera-based systems (OEC), two smartphone video-based systems (VBS) and one accelerometer (ACC). A comprehensive set of statistics for assessing reliability was used. Magnitude of errors was reported both in absolute (m s−1) and relative terms (%1RM), and included the smallest detectable change (SDC) and maximum errors (MaxError). LVT was the most reliable and sensitive device (SDC 0.02–0.06 m s−1, MaxError 3.4–7.1% 1RM) and the preferred reference to compare with other technologies. OEC and LPT were the second-best alternatives (SDC 0.06–0.11 m s−1), always considering the particular margins of error for each exercise and velocity outcome. ACC and VBS are not recommended given their substantial errors and uncertainty of the measurements (SDC > 0.13 m s−1).

Keywords

Standard error of measurement Velocity-based resistance training Exercise testing Monitoring Strength performance Validity 

Notes

References

  1. 1.
    Atkinson, G., and A. Nevill. Statistical methods for assssing measurement error (reliability) in variables relevant to sports medicine. Sport Med. 26:217–238, 1998.CrossRefGoogle Scholar
  2. 2.
    Balsalobre-Fernández, C., M. Kuzdub, P. Poveda-Ortiz, and J. Del Campo-Vecino. Validity and reliability of the PUSH wearable device to measure movement velocity during the back squat exercise. J. Strength Cond. Res. 30:1968–1974, 2016.CrossRefGoogle Scholar
  3. 3.
    Balsalobre-Fernández, C., D. Marchante, E. Baz-Valle, I. Alonso-Molero, S. L. Jiménez, and M. Muñóz-López. Analysis of wearable and smartphone-based technologies for the measurement of barbell velocity in different resistance training exercises. Front. Physiol. 8:649, 2017.CrossRefGoogle Scholar
  4. 4.
    Balsalobre-Fernández, C., D. Marchante, M. Muñoz-López, and S. L. Jiménez. Validity and reliability of a novel iPhone app for the measurement of barbell velocity and 1RM on the bench-press exercise. J. Sports Sci. 36:64–70, 2018.CrossRefGoogle Scholar
  5. 5.
    Banyard, H. G., K. Nosaka, K. Sato, and G. G. Haff. Validity of various methods for determining velocity, force, and power in the back squat. Int. J. Sports Physiol. Perform. 12:1170–1176, 2017.CrossRefGoogle Scholar
  6. 6.
    Bartlett, J. W., and C. Frost. Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound Obstet. Gynecol. 31:466–475, 2008.CrossRefGoogle Scholar
  7. 7.
    Beckerman, H., M. E. Roebroeck, G. J. Lankhorst, J. G. Becher, P. D. Bezemer, and A. L. Verbeek. Smallest real difference, a link between reproducibility and responsiveness. Qual. Life Res. 10:571–578, 2001.CrossRefGoogle Scholar
  8. 8.
    Black, M. Reliability and validity of the GymAware optical encoder to measure displacement data. 2010. https://kinetic.com.au/pdf/GA-Report2.pdf
  9. 9.
    Bland, J. M., and D. G. Altman. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310, 1986.CrossRefGoogle Scholar
  10. 10.
    Ceseracciu, E., Z. Sawacha, and C. Cobelli. Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept. PLoS ONE 9:e87640, 2014.CrossRefGoogle Scholar
  11. 11.
    García-Ramos, A., A. Pérez-Castilla, and F. Martín. Reliability and concurrent validity of the Velowin optoelectronic system to measure movement velocity during the free-weight back squat. Int. J. Sport. Sci. Coach. 13:737–742, 2018.CrossRefGoogle Scholar
  12. 12.
    Garnacho-Castaño, M. V., S. López-Lastra, and J. L. Maté-Muñoz. Reliability and validity assessment of a linear position transducer. J. Sports Sci. Med. 14:128–136, 2015.Google Scholar
  13. 13.
    Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 25:141–151, 2015.CrossRefGoogle Scholar
  14. 14.
    González-Badillo, J. J., D. Rodríguez-Rosell, L. Sánchez-Medina, E. M. Gorostiaga, and F. Pareja-Blanco. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur. J. Sport Sci. 14:772–781, 2014.CrossRefGoogle Scholar
  15. 15.
    González-Badillo, J. J., and L. Sánchez-Medina. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 31:347–352, 2010.CrossRefGoogle Scholar
  16. 16.
    Hopkins, W. G. Measures of reliability in sports medicine and science. Sport Med. 30:1–15, 2000.CrossRefGoogle Scholar
  17. 17.
    Izquierdo, M., J. Ibáñez, J. J. Gonzalez-Badillo, and E. M. Gorostiaga. Effects of creatine supplementation on muscle power, endurance, and sprint performance. Med. Sci. Sport. Exerc. 34:332–343, 2002.CrossRefGoogle Scholar
  18. 18.
    Koo, T. K., and M. Y. Li. A guideline of selecting and reporting intraclasscorrelation coefficients for reliability research. J. Chiropr. Med. 15:155–163, 2016.CrossRefGoogle Scholar
  19. 19.
    Laza-Cagigas, R., M. Goss-Sampson, E. Larumbe-Zabala, L. Termkolli, and F. Naclerio. Validity and reliability of a novel optoelectronic device to measure movement velocity, force and power during the back squat exercise. J. Sports Sci. 25:1–8, 2018.  https://doi.org/10.1080/02640414.2018.1527673.Google Scholar
  20. 20.
    Lin, L., A. S. Hedayat, B. Sinha, and M. Yang. Statistical methods in assessing agreement. J. Am. Stat. Assoc. 97:257–270, 2002.CrossRefGoogle Scholar
  21. 21.
    Lorenzetti, S., T. Lamparter, and F. Lüthy. Validity and reliability of simple measurement device to assess the velocity of the barbell during squats. BMC Res. Notes 10:707, 2017.CrossRefGoogle Scholar
  22. 22.
    Martínez-Cava, A., R. Morán-Navarro, L. Sánchez-Medina, J. J. González-Badillo, and J. G. Pallarés. Velocity- and power-load relationships in the half, parallel and full back squat. J. Sports Sci. 25:1–9, 2018.  https://doi.org/10.1080/02640414.2018.1544187.Google Scholar
  23. 23.
    Martins, W. P., and C. O. Nastri. Interpreting reproducibility results for ultrasound measurements. Ultrasound Obstet. Gynecol. 43:479–480, 2014.CrossRefGoogle Scholar
  24. 24.
    Mehrizi, R., X. Xu, S. Zhang, V. Pavlovic, D. Metaxas, and K. Li. Using a marker-less method for estimating L5/S1 moments during symmetrical lifting. Appl. Ergon. 65:541–550, 2017.CrossRefGoogle Scholar
  25. 25.
    Morán-Navarro, R., A. Martínez-Cava, L. Sánchez-Medina, R. Mora-Rodríguez, J. J. González-Badillo, and J. G. Pallarés. Movement velocity as a measure of level of effort during resistance exercise. J. Strength Cond. Res. 2017.  https://doi.org/10.1519/JSC.0000000000002017.Google Scholar
  26. 26.
    Morán-Navarro, R., C. E. Pérez, R. Mora-Rodríguez, E. de la Cruz-Sánchez, J. J. González-Badillo, L. Sánchez-Medina, and J. G. Pallarés. Time course of recovery following resistance training leading or not to failure. Eur. J. Appl. Physiol. 117:2387–2399, 2017.CrossRefGoogle Scholar
  27. 27.
    Pallarés, J. G., Á. López-Samanes, V. E. Fernández-Elías, R. Aguado-Jiménez, J. F. Ortega, C. Gómez, R. Ventura, J. Segura, and R. Mora-Rodríguez. Pseudoephedrine and circadian rhythm interaction on neuromuscular performance. Scand. J. Med. Sci. Sports 25:e603–e612, 2015.CrossRefGoogle Scholar
  28. 28.
    Pareja-Blanco, F., D. Rodríguez-Rosell, L. Sánchez-Medina, J. Sanchis-Moysi, C. Dorado, R. Mora-Custodio, J. M. Yáñez-García, D. Morales-Alamo, I. Pérez-Suárez, J. A. Calbet, and J. J. González-Badillo. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand. J. Med. Sci. Sports 27:724–735, 2017.CrossRefGoogle Scholar
  29. 29.
    Revicki, D., R. D. Hays, D. Cella, and J. Sloan. Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. J. Clin. Epidemiol. 61:102–109, 2008.CrossRefGoogle Scholar
  30. 30.
    Sánchez-Medina, L., and J. J. González-Badillo. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med. Sci. Sport. Exerc. 43:1725–1734, 2011.CrossRefGoogle Scholar
  31. 31.
    Sánchez-Medina, L., J. J. González-Badillo, C. E. Pérez, and J. G. Pallarés. Velocity- and power-load relationships of the bench pull vs bench press exercises. Int. J. Sports Med. 35:209–216, 2014.Google Scholar
  32. 32.
    Sánchez-Medina, L., R. Morán-Navarro, C. Pérez, J. González-Badillo, and J. Pallarés. Estimation of relative load from bar velocity in the full back squat exercise. Sport. Med. Int. Open 01:E80–E88, 2017.CrossRefGoogle Scholar
  33. 33.
    Sánchez-Medina, L., C. E. Perez, and J. J. González-Badillo. Importance of the propulsive phase in strength assessment. Int. J. Sports Med. 31:123–129, 2010.CrossRefGoogle Scholar
  34. 34.
    Sánchez-Pay, A., J. Courel-Ibáñez, A. Martínez-Cava, E. Conesa-Ros, R. Morán-Navarro, and J. G. Pallarés. Is the high-speed camera-based method a plausible option for bar velocity assessment during resistance training? Measurement 137:355–361, 2019.CrossRefGoogle Scholar
  35. 35.
    Sato, K., G. K. Beckham, K. Carroll, C. Bazyler, and Z. Sha. Validity of wireless device measuring velocity of resistance exercises. J. Trainol. 4:15–18, 2015.CrossRefGoogle Scholar
  36. 36.
    Watson, P. F., and A. Petrie. Method agreement analysis: a review of correct methodology. Theriogenology 73:1167–1179, 2010.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • Javier Courel-Ibáñez
    • 1
  • Alejandro Martínez-Cava
    • 1
  • Ricardo Morán-Navarro
    • 1
  • Pablo Escribano-Peñas
    • 1
  • Javier Chavarren-Cabrero
    • 2
  • Juan José González-Badillo
    • 3
  • Jesús G. Pallarés
    • 1
    Email author
  1. 1.Human Performance and Sports Science Laboratory, Faculty of Sport SciencesUniversity of MurciaSantiago de la RiberaSpain
  2. 2.Department of Physical EducationUniversity of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
  3. 3.Faculty of SportPablo de Olavide UniversitySevilleSpain

Personalised recommendations