Advertisement

Kinematics of the Spine Under Healthy and Degenerative Conditions: A Systematic Review

  • Jonas WidmerEmail author
  • Paolo Fornaciari
  • Marco Senteler
  • Tabitha Roth
  • Jess G. Snedeker
  • Mazda Farshad
Article

Abstract

Understanding spinal kinematics is essential, not only for the comprehension and diagnosis of spinal diseases, but also for improving modern tools and software. The sheer volume and complexity of now available information can be overwhelming. We aimed to distil it into a form that facilitates comparison among diverse studies addressing spinal kinematics under healthy and degenerative conditions. We specifically aimed to define a baseline definition of the spectrum of normal spinal kinematics that in turn allows a comparable definition of kinematics of the degenerative lumbar spine. The considered data was obtained by a systematic MEDLINE search including studies on angular/translational segmental motion contribution, range of motion, coupling and center of rotation. As for degenerative conditions, we collected publications on disc degeneration, facet joint osteoarthritis, facet joint tropism, spondylolisthesis, ligament degeneration and paraspinal muscle degeneration. While we could demonstrate repeating motion patterns for some topics, agreement in other fields is limited due to methodological variances and small sample sizes, particularly in publications with highly accurate but complex techniques. Besides, the high frequency of concurrent degenerative processes complicates the association between diseases and subsequent kinematical changes. Despite several substantial gaps, we stand at the precipice of technological breakthroughs that can power future large-scale studies.

Keywords

Motion Flexion Extension Axial rotation Lateral bending Center of rotation Range of motion 

Abbreviations

AOR

Axis of rotation

AR

Axial rotation

COR

Center of rotation

DD

Disc degeneration

FE

Flexion/extension

FJOA

Facet joint osteoarthritis

FJT

Facet joint tropism

FU

Functional unit

IL

Interspinous ligament

LB

Lateral bending

LD

Ligament degeneration

LF

Ligamentum flavum

LFH

Ligamentum flavum hypertrophy

NZ

Neutral zone

OA

Osteoarthritis

PMD

Paraspinal muscle degeneration

ROM

Range of motion

SL

Spondylolisthesis

Notes

Acknowledgment

The authors gratefully acknowledge Maria-Rosa Fasser’s contribution in editorial assistance.

Conflict of interest

No potential conflicts of interest.

References

  1. 1.
    Abum, K., M. M. Panjabi, K. M. Kramer, J. Duranceau, T. Oxland, and J. J. Crisco. Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine (Phila. Pa. 1976) 15:1142–1147, 1990.Google Scholar
  2. 2.
    Adams, M. A., and W. C. Hutton. The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces. J. Bone Jt Surg. Br. 62-B:358–362, 1980.Google Scholar
  3. 3.
    Ahmadi, A., N. Maroufi, H. Behtash, H. Zekavat, and M. Parnianpour. Kinematic analysis of dynamic lumbar motion in patients with lumbar segmental instability using digital videofluoroscopy. Eur. Spine J. 18:1677–1685, 2009.Google Scholar
  4. 4.
    Ahmed, A. M., N. A. Duncan, and D. L. Burke. The effect of facet geometry on the axial torque-rotation response of lumbar motion segments. Spine (Phila. Pa. 1976) 15:391–401, 1990.Google Scholar
  5. 5.
    Aiyangar, A., L. Zheng, W. Anderst, and X. Zhang. Apportionment of lumbar L2–S1 rotation across individual motion segments during a dynamic lifting task. J. Biomech. 48:3709–3715, 2015.Google Scholar
  6. 6.
    Aiyangar, A., L. Zheng, W. Anderst, and X. Zhang. Instantaneous centers of rotation for lumbar segmental flexion–extension in vivo. J. Biomech. 2016.  https://doi.org/10.1016/j.jbiomech.2016.12.021.Google Scholar
  7. 7.
    Aiyangar, A. K., L. Zheng, S. Tashman, W. J. Anderst, and X. Zhang. Capturing three-dimensional in vivo lumbar intervertebral joint kinematics using dynamic stereo-X-ray imaging. J. Biomech. Eng. 136:011004, 2014.Google Scholar
  8. 8.
    Aiyangar, A. K., et al. Capturing three-dimensional in vivo lumbar intervertebral joint kinematics using dynamic stereo-X-ray imaging. J. Biomech. Eng. 136:1–9, 2016.Google Scholar
  9. 9.
    Axelsson, P., R. Johnsson, and B. Stromqvist. Is there increased intervertebral mobility in isthmic adult spondylolisthesis? A matched comparative study using Roentgen stereophotogrammetry. Spine (Phila. Pa. 1976) 25:1701–1703, 2000.Google Scholar
  10. 10.
    Basques, B. A., A. A. Espinoza Orías, G. D. Shifflett, M. P. Fice, G. B. Andersson, H. S. An, and N. Inoue. The kinematics and spondylosis of the lumbar spine vary depending on the levels of motion segments in individuals with low back pain. Spine (Phila. Pa. 1976) 42:E767–E774, 2017.Google Scholar
  11. 11.
    Benneker, L. M., P. F. Heini, S. E. Anderson, M. Alini, and K. Ito. Correlation of radiographic and MRI parameters to morphological and biochemical assessment of intervertebral disc degeneration. Eur. Spine J. 14:27–35, 2005.Google Scholar
  12. 12.
    Bergknut, N., G. Grinwis, E. Pickee, E. Auriemma, A. S. Lagerstedt, R. Hagman, H. A. W. Hazewinkel, and B. P. Meij. Reliability of macroscopic grading of intervertebral disk degeneration in dogs by use of the Thompson system and comparison with low-field magnetic resonance imaging findings. Am. J. Vet. Res. 72:899–904, 2011.Google Scholar
  13. 13.
    Blankenbaker, D. G., V. M. Haughton, B. P. Rogers, M. E. Meyerand, and J. P. Fine. Axial rotation of the lumbar spinal motion segments correlated with concordant pain on discography: a preliminary study. Am. J. Roentgenol. 186:795–799, 2006.Google Scholar
  14. 14.
    Boden, S. D., and S. W. Wiesel. Lumbosacral segmental motion in normal individuals. Have we been measuring instability properly? Spine (Phila. Pa. 1976) 15:571–576, 1990.Google Scholar
  15. 15.
    Brown, S. H. M., D. E. Gregory, J. A. Carr, S. R. Ward, K. Masuda, and R. L. Lieber. ISSLS prize winner: adaptations to the multifidus muscle in response to experimentally induced intervertebral disc degeneration. Spine (Phila. Pa. 1976) 36:1728–1736, 2011.Google Scholar
  16. 16.
    Butler, D., J. H. Trafimow, G. B. J. Andersson, T. W. McNeill, and M. S. Huckman. Discs degenerate before facets. Spine (Phila. Pa. 1976) 15:111–113, 1990.Google Scholar
  17. 17.
    Cooley, J. R., B. F. Walker, E. M. Ardakani, T. S. Jensen, and J. J. Hebert. Relationships between paraspinal muscle morphology and neurocompressive conditions of the lumbar spine: a systematic review with meta-analysis. BMC Musculoskelet. Disord. 19:1–21, 2018.Google Scholar
  18. 18.
    Cossette, J. W., H. F. Farfan, G. H. Robertson, and R. V. Wells. The instantaneous center of rotation of the third lumbar intervertebral joint. J. Biomech. 4:149–153, 1971.Google Scholar
  19. 19.
    Crawford, H. J., and G. A. Jull. The influence of thoracic posture and movement on range of arm elevation. Physiother. Theory Pract. 9:143–148, 1993.Google Scholar
  20. 20.
    Cyron, B. M., and W. C. Hutton. Articular tropism and stability of the lumbar spine. Spine (Phila. Pa. 1976) 5:168–172, 1980.Google Scholar
  21. 21.
    Dimnet, J., A. Pasquet, M. H. Krag, and M. M. Panjabi. Cervical spine motion in the sagittal plane: Kinematic and geometric parameters. J. Biomech. 15:959–969, 1982.Google Scholar
  22. 22.
    Duda, G. N., M. Heller, J. Albinger, O. Schulz, E. Schneider, and L. Claes. Influence of muscle forces on femoral strain distribution. J. Biomech. 31:841–846, 1998.Google Scholar
  23. 23.
    Dvorak, J., M. M. Panjabi, D. G. Chang, R. Theiler, and D. Grob. Functional radiographic diagnosis of the lumbar spine. Flexion–extension and lateral bending. Spine (Phila. Pa. 1976) 16:562–571, 1991.Google Scholar
  24. 24.
    Dvořák, J., M. M. Panjabi, J. E. Novotny, D. G. Chang, and D. Grob. Clinical validation of functional flexion–extension Roentgenograms of the lumbar spine. Spine (Phila. Pa. 1976) 16:943–950, 1991.Google Scholar
  25. 25.
    Eisenstein, S. M., and C. R. Parry. The lumbar facet arthrosis syndrome. Clinical presentation and articular surface changes. J. Bone Jt Surg. Br. 69:3–7, 1987.Google Scholar
  26. 26.
    Farrance, I., and R. Frenkel. Uncertainty of measurement: a review of the rules for calculating uncertainty components through functional relationships. Clin. Biochem. Rev. 33:49–75, 2012.Google Scholar
  27. 27.
    Friberg, O. Instability in spondylolisthesis. Orthopedics 14:463–465, 1991.Google Scholar
  28. 28.
    Frobin, W., P. Brinckmann, M. Kramer, and E. Hartwig. Height of lumbar discs measured from radiographs compared with degeneration and height classified from MR images. Eur. Radiol. 11:263–269, 2001.Google Scholar
  29. 29.
    Frobin, W., P. Brinckmann, G. Leivseth, M. Biggemann, and O. Reikeras. Precision measurement of segmental motion from flexion–extension radiographs of the lumbar spine. Clin. Biomech. 11:457–465, 1996.Google Scholar
  30. 30.
    Frymoyeyr, J., A. Newberg, and M. Pope. Spine radiographs in patients with low back pain. J. Bone Jt Surg. Am. 66:1048–1055, 1984.Google Scholar
  31. 31.
    Fujii, R., H. Sakaura, Y. Mukai, N. Hosono, T. Ishii, M. Iwasaki, H. Yoshikawa, and K. Sugamoto. Kinematics of the lumbar spine in trunk rotation: in vivo three-dimensional analysis using magnetic resonance imaging. Eur. Spine J. 16:1867–1874, 2007.Google Scholar
  32. 32.
    Fujiwara, A., T. H. Lim, H. S. An, N. Tanaka, C. H. Jeon, G. B. J. Andersson, and V. M. Haughton. The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine (Phila. Pa. 1976) 25:3036–3044, 2000.Google Scholar
  33. 33.
    Fujiwara, A., K. Tamai, H. S. An, T. Kurihashi, T. H. Lim, H. Yoshida, and K. Saotome. The relationship between disc degeneration, facet joint osteoarthritis, and stability of the degenerative lumbar spine. J. Spinal Disord. 13:444–450, 2000.Google Scholar
  34. 34.
    Fujiwara, A., K. Tamai, H. S. An, T.-H. Lim, H. Yoshida, A. Kurihashi, and K. Saotome. Orientation and osteoarthritis of the lumbar facet joint. Clin. Orthop. Relat. Res. 385:88–94, 2001.Google Scholar
  35. 35.
    Fujiwara, A., K. Tamai, M. Yamato, H. S. An, H. Yoshida, K. Saotome, and A. Kurihashi. The relationship between facet joint osteoarthritis and disc degeneration of the lumbar spine: an MRI study. Eur. Spine J. 8:396–401, 1999.Google Scholar
  36. 36.
    Galbusera, F., M. Van Rijsbergen, K. Ito, J. M. Huyghe, M. Brayda-Bruno, and H. J. Wilke. Ageing and degenerative changes of the intervertebral disc and their impact on spinal flexibility. Eur. Spine J. 23:324–332, 2014.Google Scholar
  37. 37.
    Gertzbein, S. D., J. Seligman, R. Holtby, K. W. Chan, N. Ogston, A. Kapasouri, and M. Tile. Centrode characteristics of the lumbar spine as a function of segmental instability. 1986.Google Scholar
  38. 38.
    Gertzbein, S. D., J. Seligman, R. Holtby, K. H. Chan, A. Kapasouri, M. Tile, and B. Cruickshank. Centrode patterns and segmental instability in degenerative disc disease. Spine (Phila. Pa. 1976) 10:257–261, 1985.Google Scholar
  39. 39.
    Hadjipavlou, A. G., M. N. Tzermiadianos, N. Bogduk, and M. R. Zindrick. The pathophysiology of disc degeneration: a critical review. J. Bone Jt Surg. Br. 90:1261–1270, 2008.Google Scholar
  40. 40.
    Haher, T. R., M. Bergman, M. O’Brien, W. T. Felmly, J. Choueka, D. Welin, G. Chow, and A. Vassiliou. The effect of the three columns of the spine on the instantaneous axis of rotation in flexion and extension. Spine (Phila. Pa. 1976) 16:S319, 1991.Google Scholar
  41. 41.
    Haher, T. R., M. O’Brien, J. W. Dryer, R. Nucci, R. Zipnick, and D. J. Leone. The role of the lumbar facet joints in spinal stability. Spine (Phila. Pa. 1976) 19:2667–2670, 1994.Google Scholar
  42. 42.
    Haher, T. R., M. O’Brien, W. T. Felmly, D. Welin, G. Perrier, J. Choueka, V. Devlin, A. Vassiliou, and G. Chow. Instantaneous axis of rotation as a function of the three columns of the spine. Spine (Phila. Pa. 1976) 17:S149–S154, 1992.Google Scholar
  43. 43.
    Harada, M., K. Abumi, M. Ito, and K. Kaneda. Cineradiographic motion analysis of normal lumbar spine during forward and backward flexion. Spine (Phila. Pa. 1976) 25:1932–1937, 2000.Google Scholar
  44. 44.
    Hasegewa, K., K. Kitahara, T. Hara, K. Takano, and H. Shimoda. Biomechanical evaluation of segmental instability in degenerative lumbar spondylolisthesis. Eur. Spine J. 18:465–470, 2009.Google Scholar
  45. 45.
    Hashemirad, F., B. Hatef, S. Jaberzadeh, and N. Ale Agha. Validity and reliability of skin markers for measurement of intersegmental mobility at L2–3 and L3–4 during lateral bending in healthy individuals: a fluoroscopy study. J. Bodyw. Mov. Ther. 17:46–52, 2013.Google Scholar
  46. 46.
    Haughton, V. M., B. Rogers, M. E. Meyerand, and D. K. Resnick. Measuring the axial rotation of lumbar vertebrae in vivo with MR imaging. Am. J. Neuroradiol. 23:1110–1116, 2002.Google Scholar
  47. 47.
    Hayashi, T., M. D. Daubs, A. Suzuki, T. P. Scott, K. H. Phan, M. Ruangchainikom, S. Takahashi, K. Shiba, and J. C. Wang. Motion characteristics and related factors of Modic changes in the lumbar spine. J. Neurosurg. Spine 22:1–7, 2015.Google Scholar
  48. 48.
    Hayes, M. Roentgenographic evaluation of lumbar spine flex-ex in asymptomatic individuals. Spine (Phila. Pa. 1976) 14:327–331, 1989.Google Scholar
  49. 49.
    Heuer, F., H. Schmidt, Z. Klezl, L. Claes, and H. Wilke. Stepwise reduction of functional spinal structures increase range of motion and change Lordosis angle. J. Biomech. 40:271–280, 2007.Google Scholar
  50. 50.
    Iida, T., K. Abumi, Y. Kotani, and K. Kaneda. Effects of aging and spinal degeneration on mechanical properties of lumbar supraspinous and interspinous ligaments. Spine J. 2:95–100, 2002.Google Scholar
  51. 51.
    Inoue, H., S. Montgomery, B. Aghdasi, Y. Tan, H. Tian, X. Jian, R. Terrell, V. Singh, and J. Wang. Analysis of relationship between paraspinal muscle fatty degeneration and cervical spine motion using kinetic magnetic resonance imaging. Glob. Spine J. 02:033–038, 2012.Google Scholar
  52. 52.
    Jang, S. Y., M. H. Kong, H. J. Hymanson, T. K. Jin, K. Y. Song, and J. C. Wang. Radiographic parameters of segmental instability in lumbar spine using kinetic MRI. J. Korean Neurosurg. Soc. 45:24–31, 2009.Google Scholar
  53. 53.
    Jaumard, N. V., W. C. Welch, and B. A. Winkelstein. Spinal facet joint biomechanics and mechanotransduction in normal, injury and degenerative conditions. J. Biomech. Eng. 133:071010, 2011.Google Scholar
  54. 54.
    Kalichman, L., and D. J. Hunter. Lumbar facet joint osteoarthritis: a review. Semin. Arthritis Rheum. 37:69–80, 2007.Google Scholar
  55. 55.
    Kambin, P., J. E. Nixon, A. Chait, and J. L. Schaffer. Annular protrusion: pathophysiology and Roentgenographic appearance. Spine (Phila. Pa. 1976) 13:671–675, 1988.Google Scholar
  56. 56.
    Kanayama, M., K. Abumi, K. Kaneda, S. Tadano, and T. Ukai. Phase lag of the intersegmental motion in flexion–extension of the lumbar and lumbosacral spine: an in vivo study. Spine (Phila. Pa. 1976) 21:1416–1422, 1996.Google Scholar
  57. 57.
    Karadimas, E. J., M. Siddiqui, F. W. Smith, and D. Wardlaw. Positional MRI changes in supine versus sitting postures in patients with degenerative lumbar spine. J. Spinal Disord. Tech. 19:495–500, 2006.Google Scholar
  58. 58.
    Keorochana, G., C. E. Taghavi, K.-B. Lee, J. H. Yoo, J.-C. Liao, Z. Fei, and J. C. Wang. Effect of sagittal alignment on kinematic changes and degree of disc degeneration in the lumbar spine: an analysis using positional MRI. Spine (Phila. Pa. 1976) 36:893–898, 2011.Google Scholar
  59. 59.
    Keorochana, G., C. E. Taghavi, S.-T. Tzeng, Y. Morishita, J. H. Yoo, K.-B. Lee, J.-C. Liao, and J. C. Wang. Magnetic resonance imaging grading of interspinous ligament degeneration of the lumbar spine and its relation to aging, spinal degeneration, and segmental motion. J. Neurosurg. Spine 13:494–499, 2010.Google Scholar
  60. 60.
    Kettler, A., F. Rohlmann, C. Ring, C. Mack, and H. J. Wilke. Do early stages of lumbar intervertebral disc degeneration really cause instability? Evaluation of an in vitro database. Eur. Spine J. 20:578–584, 2011.Google Scholar
  61. 61.
    Kirkaldy-Willis, W. H., and H. F. Farfan. Instability of the lumbar spine. Spine (Phila. Pa. 1976) 10:253, 1985.Google Scholar
  62. 62.
    Knutsson, F. The instability associated with disc degeneration in the lumbar spine. Acta radiol. 25:593–609, 1944.Google Scholar
  63. 63.
    Kong, M. H., H. J. Hymanson, K. Y. Song, D. K. Chin, Y. E. Cho, D. H. Yoon, and J. C. Wang. Kinetic magnetic resonance imaging analysis of abnormal segmental motion of the functional spine unit. J. Neurosurg. Spine 10:357–365, 2009.Google Scholar
  64. 64.
    Kong, M. H., Y. Morishita, W. He, M. Miyazaki, H. Zhang, G. Wu, H. J. Hymanson, and J. C. Wang. Lumbar segmental mobility according to the grade of the disc, the facet joint, the muscle, and the ligament pathology by using kinetic magnetic resonance imaging. Spine (Phila. Pa. 1976) 34:2537–2544, 2009.Google Scholar
  65. 65.
    Krismer, M., C. Haid, H. Behensky, P. Kapfinger, F. Landauer, and F. Rachbauer. Motion in lumbar functional spine units during side bending and axial rotation moments depending on the degree of degeneration. Spine (Phila. Pa. 1976) 25:2020–2027, 2000.Google Scholar
  66. 66.
    Kulig, K., C. Powers, and R. Landel. Segmental lumbar mobility in individuals with low back pain: in vivo assessment during manual and self-imposed motion using dynamic MRI. BMC Musculoskelet. Disord. 10:1–10, 2007.Google Scholar
  67. 67.
    Lao, L., M. D. Daubs, T. P. Scott, E. L. Lord, J. R. Cohen, R. Yin, G. Zhong, and J. C. Wang. Effect of disc degeneration on lumbar segmental mobility analyzed by kinetic magnetic resonance imaging. Spine (Phila. Pa. 1976) 40:316–322, 2014.Google Scholar
  68. 68.
    Lee, S. H., S. D. Daffner, J. C. Wang, B. C. Davis, A. Alanay, and J. S. Kim. The change of whole lumbar segmental motion according to the mobility of degenerated disc in the lower lumbar spine: a kinetic MRI study. Eur. Spine J. 24:1893–1900, 2014.Google Scholar
  69. 69.
    Lee, S. W., E. R. C. Draper, and S. P. F. Hughes. Instantaneous center of rotation and instability of the cervical spine: a clinical study. Eur. Spine J. 22:641–648, 1997.Google Scholar
  70. 70.
    Lee, S., K. W. N. Wong, M. Chan, H. Yeung, J. L. F. Chiu, and J. C. Y. Leong. Development and validation of a new technique for assessing lumbar spine motion. Spine (Phila. Pa. 1976) 27:E215, 2002.Google Scholar
  71. 71.
    Li, G., S. Wang, P. Passias, Q. Xia, G. Li, and K. Wood. Segmental in vivo vertebral motion during functional human lumbar spine activities. Eur. Spine J. 18:1013–1021, 2009.Google Scholar
  72. 72.
    Li, W., S. Wang, Q. Xia, P. Passias, M. Kozanek, K. Wood, and G. Li. Lumbar facet joint motion in patients with degenerative disc disease at affected and adjacent levels: an in vivo biomechanical study. Spine (Phila. Pa. 1976) 36:E629–E637, 2011.Google Scholar
  73. 73.
    Malakoutian, M., D. Volkheimer, J. Street, M. F. Dvorak, H. J. Wilke, and T. R. Oxland. Do in vivo kinematic studies provide insight into adjacent segment degeneration? A qualitative systematic literature review. Eur. Spine J. 24:1865–1881, 2015.Google Scholar
  74. 74.
    Mansour, M., S. Spiering, C. Lee, H. Dathe, A. K. Kalscheuer, D. Kubein-Meesenburg, and H. Nägerl. Evidence for IHA migration during axial rotation of a lumbar spine segment by using a novel high-resolution 6D kinematic tracking system. J. Biomech. 37:583–592, 2003.Google Scholar
  75. 75.
    McGregor, A. H., L. Anderton, W. M. W. Gedroyc, J. Johnson, and S. P. F. Hughes. The use of interventional open MRI to assess the kinematics of the lumbar spine in patients with spondylolisthesis. Spine (Phila. Pa. 1976) 27:1582–1586, 2002.Google Scholar
  76. 76.
    McGregor, A. H., H. R. Cattermole, and S. P. Hughes. Spinal motion in lumbar degenerative disc disease. J. Bone Jt Surg. Br. 80:1009–1013, 1998.Google Scholar
  77. 77.
    McGregor, A. H., H. R. Cattermole, and S. P. Hughes. Global spinal motion in subjects with lumbar spondylolysis and spondylolisthesis: does the grade or type of slip affect global spinal motion? Spine (Phila. Pa. 1976) 26:282–286, 2001.Google Scholar
  78. 78.
    Meyerding, H. W. Spondylolisthesis. Surg. Gynecol. Obstet. 54:371, 1932.Google Scholar
  79. 79.
    Miao, J., S. Wang, Z. Wan, W. M. Park, Q. Xia, K. Wood, and G. Li. Motion characteristics of the vertebral segments with lumbar degenerative spondylolisthesis in elderly patients. Eur. Spine J. 22:425–431, 2013.Google Scholar
  80. 80.
    Mimura, M. Rotational instability of the lumbar spine—a three-dimensional motion study using bi-plane X-ray analysis system. Nippon Seikeigeka Gakkai Zasshi 64:546–559, 1990.Google Scholar
  81. 81.
    Mimura, M., et al. Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine (Phila. Pa. 1976) 19:1371–1380, 1993.Google Scholar
  82. 82.
    Min, H. K., W. He, Y. D. Tsai, N. F. Chen, G. Keorochana, D. H. Do, and J. C. Wang. Relationship of facet tropism with degeneration and stability of functional spinal unit. Yonsei Med. J. 50:624–629, 2009.Google Scholar
  83. 83.
    Miyasaka, K., K. Ohmori, K. Suzuki, and H. Inoue. Radiographic analysis of lumbar motion in relation to lumbosacral stability. Investigation of moderate and maximum motion. Spine (Phila. Pa. 1976) 25:732–737, 2000.Google Scholar
  84. 84.
    Miyazaki, M., Y. Morishita, C. Takita, T. Yoshiiwa, J. C. Wang, and H. Tsumura. Analysis of the relationship between facet joint angle orientation and lumbar spine canal diameter with respect to the kinematics of the lumbar spinal unit. J. Spinal Disord. Tech. 23:242–248, 2010.Google Scholar
  85. 85.
    Muriuki, M. G., R. M. Havey, L. I. Voronov, G. Carandang, M. R. Zindrick, M. A. Lorenz, L. Lomasney, and A. G. Patwardhan. Effects of motion segment level, Pfirrmann intervertebral disc degeneration grade and gender on lumbar spine kinematics. 1–10, 2016.  https://doi.org/10.1002/jor.23232.
  86. 86.
    Ochia, R. S., N. Inoue, S. M. Renner, E. P. Lorenz, T. Lim, G. B. J. Andersson, and H. S. An. Three-dimensional in vivo measurement of lumbar spine segmental motion. Spine (Phila. Pa. 1976) 31:2073–2078, 2006.Google Scholar
  87. 87.
    Ochia, R. S., N. Inoue, R. Takatori, G. B. J. Andersson, and H. S. An. In vivo measurements of lumbar segmental motion during axial rotation in asymptomatic and chronic low back pain male subjects. Spine (Phila. Pa. 1976) 32:1394–1399, 2007.Google Scholar
  88. 88.
    Ogston, N.G. Centrode patterns in the lumbar spine. 1985.Google Scholar
  89. 89.
    Okawa, A., K. Shinomiya, H. Komori, T. Muneta, Y. Arai, and O. Nakai. Dynamic motion study of the whole lumbar spine by videofluoroscopy. Spine (Phila. Pa. 1976) 23:1743–1749, 1998.Google Scholar
  90. 90.
    Olsson, T. H., G. Selvik, and S. Willner. Vertebral motion in spondylolisthesis. Acta Radiol. Diagn. (Stockh.) 17:861–868, 1976.Google Scholar
  91. 91.
    Otani, K., A. Okawa, K. Shinomiya, and O. Nakai. Spondylolisthesis with postural slip reduction shows different motion patterns with video-fluoroscopic analysis. J. Orthop. Sci. 10:152–159, 2005.Google Scholar
  92. 92.
    Oxland, T. R., T. Lund, B. Jost, P. Cripton, K. Lippuner, P. Jaeger, and L. P. Nolte. The relative importance of vertebral bone density and disc degeneration in spinal flexibility and interbody implant performance: an in vitro study. Spine (Phila. Pa. 1976) 21:2558–2569, 1996.Google Scholar
  93. 93.
    Panjabi, M. M. Centers and angles of rotation of body joints: a study of errors and optimization. J. Biomech. 12:911–920, 1979.Google Scholar
  94. 94.
    Panjabi, M. M. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J. Spinal Disord. 5:390–397, 1992.Google Scholar
  95. 95.
    Panjabi, M. M. A hypothesis of chronic back pain: ligament subfailure injuries lead to muscle control dysfunction. Eur. Spine J. 15:668–676, 2006.Google Scholar
  96. 96.
    Panjabi, M. M., V. K. Goel, and K. Takata. Physiologic strains in the lumbar spine ligaments. Spine (Phila. Pa. 1976) 7:192–203, 1982.Google Scholar
  97. 97.
    Panjabi, M. M., T. R. Oxland, I. Yamamoto, and J. J. Crisco. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load–displacement curves. J. Bone Jt Surg. Am. 76:413–424, 1994.Google Scholar
  98. 98.
    Passias, P. G., S. Wang, M. Kozanek, Q. Xia, W. Li, B. Grottkau, K. B. Wood, and G. Li. Segmental lumbar rotation in patients with discogenic low back pain during functional weight-bearing activities. J. Bone Jt Surg. Am. 93:29–37, 2011.Google Scholar
  99. 99.
    Patel, M. M., D. V. Gohil, and T. C. Singel. Orientation of superior articular facets from C3 to S1 vertebrae. J. Anat. Soc. India 53:35–39, 2004.Google Scholar
  100. 100.
    Pearcy, M. J. Stereoradiography of lumbar spine motion. Acta Orthop. Scand. 212(Suppl):1–45, 1985.Google Scholar
  101. 101.
    Pearcy, M. J., and N. Bogduk. Instantaneous axes of rotation of the lumbar intervertebral joints. pdf., 1988.Google Scholar
  102. 102.
    Pearcy, M., and J. Shepherd. Is there instability in spondylolisthesis? Spine (Phila. Pa. 1976) 10:175–177, 1985.Google Scholar
  103. 103.
    Pennal, G. F., G. S. Conn, G. McDonald, G. Dale, and H. Garside. Motion studies of the lumbar spine—a preliminary report. J. Bone Jt Surg. 54 B:442–452, 1972.Google Scholar
  104. 104.
    Penning, L., and J. R. Blickman. Instability in lumbar spondylolisthesis: a radiologic study of several concepts. Am. J. Roentgenol. 1979.  https://doi.org/10.2214/ajr.134.2.293.Google Scholar
  105. 105.
    Phan, K. H., M. D. Daubs, A. I. Kupperman, T. P. Scott, and J. C. Wang. Kinematic analysis of diseased and adjacent segments in degenerative lumbar spondylolisthesis. Spine J. 15:230–237, 2015.Google Scholar
  106. 106.
    Plamondon, A., M. Gagnon, and G. Maurais. Application of a stereoradiographic method for the study of intervertebral motion. Spine (Phila. Pa. 1976) 13:1027–1032, 1988.Google Scholar
  107. 107.
    Pope, M. H., D. G. Wilder, R. E. Matteri, and J. W. Frymoyer. Experimental measurements of vertebral motion under load. Orthop. Clin. N. Am. 8:155–167, 1977.Google Scholar
  108. 108.
    Quack, C., P. Schenk, T. Laeubli, S. Spillmann, J. Hodler, B. A. Michel, and A. Klipstein. Do MRI findings correlate with mobility tests? An explorative analysis of the test validity with regard to structure. Eur. Spine J. 16:803–812, 2007.Google Scholar
  109. 109.
    Quint, U., and H. J. Wilke. Grading of degenerative disk disease and functional impairment: imaging versus patho-anatomical findings. Eur. Spine J. 17:1705–1713, 2008.Google Scholar
  110. 110.
    Rolander, S. D. Motion of the lumbar spine with special reference to the stabilizing effect of posterior fusion: an experimental study on autopsy specimens. 1966.  https://doi.org/10.3109/ort.1966.37.suppl-90.01.
  111. 111.
    Rousseau, M. A., D. S. Bradford, T. M. Hadi, K. L. Pedersen, and J. C. Lotz. The instant axis of rotation influences facet forces at L5/S1 during flexion/extension and lateral bending. Eur. Spine J. 15:299–307, 2006.Google Scholar
  112. 112.
    Rozumalski, A., M. H. Schwartz, R. Wervey, A. Swanson, D. C. Dykes, and T. Novacheck. The in vivo three-dimensional motion of the human lumbar spine during gait. Gait Posture 28:378–384, 2008.Google Scholar
  113. 113.
    Sakamaki, T., S. Katoh, and K. Sairyo. Normal and spondylolytic pediatric spine movements with reference to instantaneous axis of rotation. Spine (Phila. Pa. 1976) 27:141–145, 2002.Google Scholar
  114. 114.
    Saleem, S., H. M. Aslam, M. A. K. Rehmani, A. Raees, A. A. Alvi, and J. Ashraf. Lumbar disc degenerative disease: disc degeneration symptoms and magnetic resonance image findings. Asian Spine J. 7:322–334, 2013.Google Scholar
  115. 115.
    Samartzis, D., et al. Is lumbar facet joint tropism developmental or secondary to degeneration? An international, large-scale multicenter study by the AOSpine Asia Pacific Research Collaboration Consortium. Scoliosis Spinal Disord. 11:9, 2016.Google Scholar
  116. 116.
    Saraste, H., L. A. Brostrom, and T. Aparisi. Prognostic radiographic aspects of spondylolisthesis. Acta Radiol. Diagn. (Stockh.) 25:427–432, 1984.Google Scholar
  117. 117.
    Schmidt, H., F. Heuer, L. Claes, and H. J. Wilke. The relation between the instantaneous center of rotation and facet joint forces—a finite element analysis. Clin. Biomech. 23:270–278, 2008.Google Scholar
  118. 118.
    Schneider, G., M. J. Pearcy, and N. Bogduk. Abnormal motion in spondylolytic spondylolisthesis. Spine (Phila. Pa. 1976) 30:1159–1164, 2005.Google Scholar
  119. 119.
    Seligman, J. V., S. D. Gertzbein, M. Tile, and A. Kapasouri. Computer analysis of spinal segment motion in degenerative disc disease with and without axial loading. Spine (Phila. Pa. 1976) 9:566–573, 1984.Google Scholar
  120. 120.
    Serena S. Hu, MD, Clifford B. Tribus, MD, Mohammad Diab, MD, and Alexander J. Ghanayem, M. Spondylolisthesis and Spondylolysis. Pain 57:655–671, 2007.Google Scholar
  121. 121.
    Serhan, H. A., G. Varnavas, A. P. Dooris, A. Patwadhan, and M. Tzermiadianos. Biomechanics of the posterior lumbar articulating elements. Neurosurg. Focus 22:E1, 2007.Google Scholar
  122. 122.
    Shahidi, B., J. C. Hubbard, M. C. Gibbons, S. Ruoss, V. Zlomislic, R. T. Allen, S. R. Garfin, and S. R. Ward. Lumbar multifidus muscle degenerates in individuals with chronic degenerative lumbar spine pathology. J. Orthop. Res. 35:2700–2706, 2017.Google Scholar
  123. 123.
    Shin, J. H., S. Wang, Q. Yao, K. B. Wood, and G. Li. Investigation of coupled bending of the lumbar spine during dynamic axial rotation of the body. Eur. Spine J. 22:2671–2677, 2013.Google Scholar
  124. 124.
    Shirazi-Adl, A., A. M. Ahmed, and S. C. Shrivastava. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. 1986.Google Scholar
  125. 125.
    Simon, P., A. A. E. Orías, G. B. J. Andersson, H. S. An, and N. N. Inoue. In vivo topographic analysis of lumbar facet joint space width distribution in healthy and symptomatic subjects. Spine (Phila. Pa. 1976) 37:1058–1064, 2012.Google Scholar
  126. 126.
    Stokes, I. A., and J. W. Frymoyer. Segmental motion and instability. Spine (Phila. Pa. 1976) 12:688–691, 1987.Google Scholar
  127. 127.
    Takayanagi, K., K. Takahashi, M. Yamagata, H. Moriya, H. Kitahara, and T. Tamaki. Using cineradiography for continuous dynamic-motion analysis of the lumbar spine. Spine (Phila. Pa. 1976) 26:1858–1865, 2001.Google Scholar
  128. 128.
    Tallroth, K., H. Alaranta, and A. Soukka. Lumbar mobility in asymptomatic individuals. J. Spinal Disord. 5:481–484, 1992.Google Scholar
  129. 129.
    Tan, Y., B. G. Aghdasi, S. R. Montgomery, H. Inoue, C. Lu, and J. C. Wang. Kinetic magnetic resonance imaging analysis of lumbar segmental mobility in patients without significant spondylosis. Eur. Spine J. 21:2673–2679, 2012.Google Scholar
  130. 130.
    Tanaka, N., H. S. An, T. H. Lim, A. Fujiwara, C. H. Jeon, and V. M. Haughton. The relationship between disc degeneration and flexibility of the lumbar spine. Spine J. 1:47–56, 2001.Google Scholar
  131. 131.
    Teichtahl, A. J., D. M. Urquhart, Y. Wang, A. E. Wluka, R. O’Sullivan, G. Jones, and F. M. Cicuttini. Lumbar disc degeneration is associated with Modic change and high paraspinal fat content—a 3.0T magnetic resonance imaging study. BMC Musculoskelet. Disord. 17:1–7, 2016.Google Scholar
  132. 132.
    Teyhen, D. S., T. W. Flynn, J. D. Childs, T. R. Kuklo, M. K. Rosner, D. W. Polly, and L. D. Abraham. Fluoroscopic video to identify aberrant lumbar motion. Spine (Phila. Pa. 1976) 32:E220–E229, 2007.Google Scholar
  133. 133.
    Thomopoulos, C., G. Parati, and A. Zanchetti. Effects of blood pressure lowering on outcome incidence in hypertension: 7. Effects of more vs. less intensive blood pressure lowering and different achieved blood pressure levels - Updated overview and meta-analyses of randomized trials. J. Hypertens. 34:613–622, 2016.Google Scholar
  134. 134.
    Torgerson, W. R., and W. E. Dotter. Comparative Roentgenographic study of the asymptomatic and symptomatic lumbar spine. J. Bone Jt Surg. Am. 58:850–853, 1976.Google Scholar
  135. 135.
    Vernon-Roberts, B., and C. J. Pirie. Degenerative changes in the intervertebral discs of the lumbar spine and their squeletae. Rheumatol. Rehabil. 16:13–21, 1977.Google Scholar
  136. 136.
    Volkheimer, D., M. Malakoutian, T. R. Oxland, and H. J. Wilke. Limitations of current in vitro test protocols for investigation of instrumented adjacent segment biomechanics: critical analysis of the literature. Eur. Spine J. 24:1882–1892, 2015.Google Scholar
  137. 137.
    Wachowski, M. M., T. Hawellek, J. Hubert, A. Lehmann, M. Mansour, C. Dumont, J. Dörner, B. W. Raab, D. Kubein-Meesenburg, and H. Nägerl. Migration of the instantaneous axis of motion during axial rotation in lumbar segments and role of the zygapophysial joints. Acta Bioeng. Biomech. 12:39–46, 2010.Google Scholar
  138. 138.
    Wang, S., P. Passias, G. Li, G. Li, and K. Wood. Measurement of Vertebral Kinematics Using Noninvasive Image Matching Method – Validation and Application. Spine (Phila Pa 1976) 33:355–361, 2008.Google Scholar
  139. 139.
    Weiner, D. K., B. Distell, S. Studenski, S. Martinez, L. Lomasney, and D. Bongiorni. Does radiographic osteoarthritis correlate with flexibility of the lumbar spine? J. Am. Geriatr. Soc. 42:257–263, 1994.Google Scholar
  140. 140.
    White 3rd, A. A., and M. M. Panjabi. The basic kinematics of the human spine. A review of past and current knowledge. Spine (Phila Pa 1976) 3:12–20, 1978.Google Scholar
  141. 141.
    White, A. A., and M. Panjabi. Clinical Biomechanics of the Spine, 2nd ed. Philadelphia: Lippincott 2:18–20, 1990.Google Scholar
  142. 142.
    Wong, K., K. Luk, J. Leong, S. Wong, and K. Wong. Continuous Dynamic Spinal Motion Analysis. Spine (Phila. Pa. 1976). 31:414–419, 2006.Google Scholar
  143. 143.
    Wong, K. W. N., J. C. Y. Leong, M. Chan, K. D. K. Luk, and W. W. Lu. The flexion-extension profile of lumbar spine in 100 healthy volunteers. Spine (Phila. Pa. 1976). 29:1636–1641, 2004.Google Scholar
  144. 144.
    Wood, K. B., C. A. Popp, E. E. Transfeldt, and A. E. Geissele. Radiographic evaluation of instability in spondylolisthesis. Spine (Phila. Pa. 1976). 19:1697–703, 1994.Google Scholar
  145. 145.
    Wu, M., S. Wang, S. J. Driscoll, T. D. Cha, K. B. Wood, and G. Li. Dynamic motion characteristics of the lower lumbar spine: implication to lumbar pathology and surgical treatment. Eur. Spine J. 23:2350–2358, 2014.Google Scholar
  146. 146.
    Xia, Q., S. Wang, M. Kozanek, P. Passias, K. Wood, and G. Li. In-vivo motion characteristics of lumbar vertebrae in sagittal and transverse planes. J. Biomech. 43:1905–1909, 2010.Google Scholar
  147. 147.
    Yao, Q., S. Wang, J. Shin, G. Li, and K. B. Wood. Lumbar facet joint motion in patients with degenerative spondylolisthesis. J. Spinal Disord. Tech. 26:E19–E27, 2013.Google Scholar
  148. 148.
    Yoshioka, T., H. Tsuji, N. Hirano, and S. Sainoh. Motion characteristic of the normal lumbar spine in young adults: instantaneous axis of rotation and vertebral center motion analyses. J. Spinal Disord. Tech. 3:103–113, 1990.Google Scholar
  149. 149.
    Zhang, Y. H., C. Q. Zhao, L. S. Jiang, X. D. Chen, and L. Y. Dai. Modic changes: a systematic review of the literature. Eur. Spine J. 17:1289–1299, 2008.Google Scholar
  150. 150.
    Zirbel, S. A., D. K. Stolworthy, L. L. Howell, and A. E. Bowden. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load. Spine J. 13:1134–1147, 2013.Google Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • Jonas Widmer
    • 1
    • 2
    Email author
  • Paolo Fornaciari
    • 1
  • Marco Senteler
    • 1
    • 2
  • Tabitha Roth
    • 1
    • 2
  • Jess G. Snedeker
    • 1
    • 2
  • Mazda Farshad
    • 1
  1. 1.Department of OrthopaedicsBalgrist University HospitalZurichSwitzerland
  2. 2.Institute of BiomechanicsETH ZurichZurichSwitzerland

Personalised recommendations