Development of a Computational Method for Simulating Tricuspid Valve Dynamics

  • Shelly Singh-Gryzbon
  • Vahid Sadri
  • Milan Toma
  • Eric L. Pierce
  • Zhenglun A. Wei
  • Ajit P. YoganathanEmail author


Computational modeling can be used to improve understanding of tricuspid valve (TV) biomechanics and supplement knowledge gained from benchtop and large animal experiments. The aim of this study was to develop a computational model of the TV using high resolution micro-computed tomography (μCT) imaging and fluid–structure interaction simulations. A three-dimensional TV model, incorporating detailed leaflet and chordal geometries, was reconstructed from μCT images of an excised porcine TV obtained under diastolic conditions. The leaflets were described using non-linear stress–strain relations and chordal properties were iteratively adjusted until valve closure was obtained. The leaflet coaptation zone obtained from simulation of valve closure was validated against μCT images of the TV captured at peak systole. The computational model was then used to simulate a regurgitant TV morphology and investigate changes in closure dynamics. Overall, the mean stresses in the leaflet belly region and the chordae tendinae of the regurgitant TV were 7% and 3% higher than the same regions of the normal TV. The maximum principal strain in the leaflet belly of the regurgitant TV was also 9% higher than the same regions of the normal TV. It is anticipated that this computational model can be used in future studies for further understanding of TV biomechanics and associated percutaneous repairs.


Biomechanics SPH Tricuspid regurgitation Micro-CT Fluid–structure interaction 



Three dimensional


Anterior leaflet


Anterior papillary muscle


Computational fluid dynamics


Cylindrical right heart simulator


Computed tomography


Finite element


Fluid–structure interaction


Posterior leaflet


Posterior papillary muscle


Papillary muscle


Septal leaflet


Smooth particle hydrodynamics


Septal papillary muscle


Tricuspid regurgitation


Transcatheter tricuspid valve


Tricuspid valve



The authors would like to acknowledge Charlie Bloodworth for his technical assistance with the in vitro methods used in this study; Shaily Shah for assisting with the model segmentation and smoothing; and Mandy Salmon for assisting with the chordal iterations.


The authors have no disclosures relevant to this work


  1. 1.
    Asmarats, L., R. Puri, A. Latib, J. L. Navia, and J. Rodes-Cabau. Transcatheter tricuspid valve interventions: landscape, challenges, and future directions. J. Am. Coll. Cardiol. 71:2935–2956, 2018.CrossRefGoogle Scholar
  2. 2.
    Basu, A., C. Lacerda, and Z. He. Mechanical properties and composition of the basal leaflet-annulus region of the tricuspid valve. Cardiovasc Eng Technol 9:217–225, 2018.CrossRefGoogle Scholar
  3. 3.
    Bloodworth, C. H. T., E. L. Pierce, T. F. Easley, A. Drach, A. H. Khalighi, M. Toma, M. O. Jensen, M. S. Sacks, and A. P. Yoganathan. Ex vivo methods for informing computational models of the mitral valve. Ann. Biomed. Eng. 45:496–507, 2017.CrossRefGoogle Scholar
  4. 4.
    Caballero, A., W. Mao, L. Liang, J. Oshinski, C. Primiano, R. McKay, S. Kodali, and W. Sun. Modeling left ventricular blood flow using smoothed particle hydrodynamics. Cardiovasc. Eng. Technol. 8:465–479, 2017.CrossRefGoogle Scholar
  5. 5.
    Collé, A., J. Limido, and J.-P. Vila. An accurate SPH scheme for dynamic fragmentation modelling. EPJ Web Conf. 183:01030, 2018.CrossRefGoogle Scholar
  6. 6.
    Hahn, R. T. State-of-the-art review of echocardiographic imaging in the evaluation and treatment of functional tricuspid regurgitation. Circ. Cardiovasc. Imaging 9(12):e005332, 2016.CrossRefGoogle Scholar
  7. 7.
    Khoiy, K. A., and R. Amini. On the biaxial mechanical response of porcine tricuspid valve leaflets. J. Biomech. Eng. 138:10504, 2016.Google Scholar
  8. 8.
    Khoiy, K. A., A. D. Pant, and R. Amini. Quantification of material constants for a phenomenological constitutive model of porcine tricuspid valve leaflets for simulation applications. J. Biomech. Eng. 140(9):094503, 2018.CrossRefGoogle Scholar
  9. 9.
    Kong, F., T. Pham, C. Martin, R. McKay, C. Primiano, S. Hashim, S. Kodali, and W. Sun. Finite element analysis of tricuspid valve deformation from multi-slice computed tomography images. Ann. Biomed. Eng. 46:1112–1127, 2018.CrossRefGoogle Scholar
  10. 10.
    Lanson, N., and J. P. Vila. Meshless methods for conservation laws. Math. Comput. Simul. 55:493–501, 2001.CrossRefGoogle Scholar
  11. 11.
    Lau, K. D., V. Diaz, P. Scambler, and G. Burriesci. Mitral valve dynamics in structural and fluid-structure interaction models. Med. Eng. Phys. 32:1057–1064, 2010.CrossRefGoogle Scholar
  12. 12.
    Lim, K. O. Mechanical properties and ultrastructure of normal human tricuspid valve chordae tendineae. Jpn. J. Physiol. 30:455–464, 1980.CrossRefGoogle Scholar
  13. 13.
    Lim, K. O., D. R. Boughner, and D. G. Perkins. Ultrastructure and mechanical properties of chordae tendineae from a myxomatous tricuspid valve. Jpn. Heart J. 24:539–548, 1983.CrossRefGoogle Scholar
  14. 14.
    Malinowski, M., T. Jazwiec, M. Goehler, N. Quay, J. Bush, S. Jovinge, M. K. Rausch, and T. A. Timek. Sonomicrometry-derived 3-dimensional geometry of the human tricuspid annulus. J. Thorac. Cardiovasc. Surg. 2018Google Scholar
  15. 15.
    Mao, W., K. Li, and W. Sun. Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc. Eng. Technol. 7:374–388, 2016.CrossRefGoogle Scholar
  16. 16.
    Monaghan, J. J., and R. A. Gingold. Shock simulation by the particle method SPH. J. Comput. Phys. 52:374–389, 1983.CrossRefGoogle Scholar
  17. 17.
    Nickenig, G., M. Kowalski, J. Hausleiter, D. Braun, J. Schofer, E. Yzeiraj, V. Rudolph, K. Friedrichs, F. Maisano, M. Taramasso, N. Fam, G. Bianchi, F. Bedogni, P. Denti, O. Alfieri, A. Latib, A. Colombo, C. Hammerstingl, and R. Schueler. Transcatheter treatment of severe tricuspid regurgitation with the edge-to-edge MitraClip technique. Circulation 135:1802–1814, 2017.CrossRefGoogle Scholar
  18. 18.
    Nishimura, R. A., C. M. Otto, R. O. Bonow, B. A. Carabello, J. P. Erwin, 3rd, L. A. Fleisher, H. Jneid, M. J. Mack, C. J. McLeod, P. T. O’Gara, V. H. Rigolin, T. M. Sundt, 3rd, and A. Thompson. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 135:e1159–e1195, 2017.CrossRefGoogle Scholar
  19. 19.
    Paul, D. M., A. Naran, E. L. Pierce, C. H. Bloodworth, S. F. Bolling, and A. P. Yoganathan. Suture dehiscence in the tricuspid annulus: an ex vivo analysis of tissue strength and composition. Ann. Thorac. Surg. 104:820–826, 2017.CrossRefGoogle Scholar
  20. 20.
    Perlman, G., F. Praz, R. Puri, H. Ofek, J. Ye, F. Philippon, T. Carrel, P. Pibarot, A. Attinger, N. M. Htun, D. Dvir, R. Moss, F. Campelo-Parada, E. Bedard, D. Reineke, A. Moschovitis, S. Lauck, P. Blanke, J. Leipsic, S. Windecker, J. Rodes-Cabau, and J. Webb. Transcatheter tricuspid valve repair with a new transcatheter coaptation system for the treatment of severe tricuspid regurgitation: 1-year clinical and echocardiographic results. JACC Cardiovasc. Interv. 10:1994–2003, 2017.CrossRefGoogle Scholar
  21. 21.
    Pham, T., F. Sulejmani, E. Shin, D. Wang, and W. Sun. Quantification and comparison of the mechanical properties of four human cardiac valves. Acta Biomater. 54:345–355, 2017.CrossRefGoogle Scholar
  22. 22.
    Pozzoli, A., M. Zuber, M. Reisman, F. Maisano, and M. Taramasso. Comparative anatomy of mitral and tricuspid valve: what can the interventionlist learn from the surgeon. Front. Cardiovasc. Med. 5:80, 2018.CrossRefGoogle Scholar
  23. 23.
    Rankin, J. S., B. G. Hammill, T. B. Ferguson, Jr, D. D. Glower, S. M. O’Brien, E. R. DeLong, E. D. Peterson, and F. H. Edwards. Determinants of operative mortality in valvular heart surgery. J. Thorac. Cardiovasc. Surg. 131:547–557, 2006.CrossRefGoogle Scholar
  24. 24.
    Rausch, M. K., M. Malinowski, P. Wilton, A. Khaghani, and T. A. Timek. Engineering analysis of tricuspid annular dynamics in the beating ovine heart. Ann. Biomed. Eng. 46:443–451, 2018.CrossRefGoogle Scholar
  25. 25.
    Rodes-Cabau, J., R. T. Hahn, A. Latib, M. Laule, A. Lauten, F. Maisano, J. Schofer, F. Campelo-Parada, R. Puri, and A. Vahanian. Transcatheter therapies for treating tricuspid regurgitation. J. Am. Coll. Cardiol. 67:1829–1845, 2016.CrossRefGoogle Scholar
  26. 26.
    Schofer, J., K. Bijuklic, C. Tiburtius, L. Hansen, A. Groothuis, and R. T. Hahn. First-in-human transcatheter tricuspid valve repair in a patient with severely regurgitant tricuspid valve. J. Am. Coll. Cardiol. 65:1190–1195, 2015.CrossRefGoogle Scholar
  27. 27.
    Silver, M. D., J. H. Lam, N. Ranganathan, and E. D. Wigle. Morphology of the human tricuspid valve. Circulation 43:333–348, 1971.CrossRefGoogle Scholar
  28. 28.
    Singh-Gryzbon, S., A. W. Siefert, E. L. Pierce, and A. P. Yoganathan. Tricuspid valve annular mechanics: interactions with and implications for transcatheter devices. Cardiovasc. Eng. Technol. 2019.Google Scholar
  29. 29.
    Spinner, E. M., D. Buice, C. H. Yap, and A. P. Yoganathan. The effects of a three-dimensional, saddle-shaped annulus on anterior and posterior leaflet stretch and regurgitation of the tricuspid valve. Ann. Biomed. Eng. 40:996–1005, 2012.CrossRefGoogle Scholar
  30. 30.
    Spinner, E. M., P. Shannon, D. Buice, J. H. Jimenez, E. Veledar, P. J. Del Nido, D. H. Adams, and A. P. Yoganathan. In vitro characterization of the mechanisms responsible for functional tricuspid regurgitation. Circulation 124:920–929, 2011.CrossRefGoogle Scholar
  31. 31.
    Stevanella, M., E. Votta, M. Lemma, C. Antona, and A. Redaelli. Finite element modelling of the tricuspid valve: a preliminary study. Med. Eng. Phys. 32:1213–1223, 2010.CrossRefGoogle Scholar
  32. 32.
    Stuge, O., and J. Liddicoat. Emerging opportunities for cardiac surgeons within structural heart disease. J. Thorac. Cardiovasc. Surg. 132:1258–1261, 2006.CrossRefGoogle Scholar
  33. 33.
    Sturla, F., F. Onorati, E. Votta, K. Pechlivanidis, M. Stevanella, A. D. Milano, G. Puppini, A. Mazzucco, A. Redaelli, and G. Faggian. Is it possible to assess the best mitral valve repair in the individual patient? Preliminary results of a finite element study from magnetic resonance imaging data. J. Thorac. Cardiovasc. Surg. 148:1025–1034, 2014; (discussion 1034).CrossRefGoogle Scholar
  34. 34.
    Sun, P. N., A. Colagrossi, S. Marrone, M. Antuono, and A. M. Zhang. Multi-resolution Delta-plus-SPH with tensile instability control: towards high Reynolds number flows. Comput. Phys. Commun. 224:63–80, 2018.CrossRefGoogle Scholar
  35. 35.
    Taramasso, M., R. T. Hahn, H. Alessandrini, A. Latib, A. Attinger-Toller, D. Braun, E. Brochet, K. A. Connelly, P. Denti, F. Deuschl, A. Englmaier, N. Fam, C. Frerker, J. Hausleiter, J. M. Juliard, R. Kaple, F. Kreidel, K. H. Kuck, S. Kuwata, M. Ancona, M. Malasa, T. Nazif, G. Nickenig, F. Nietlispach, A. Pozzoli, U. Schafer, J. Schofer, R. Schueler, G. Tang, A. Vahanian, J. G. Webb, E. Yzeiraj, F. Maisano, and M. B. Leon. The international multicenter TriValve registry: which patients are undergoing transcatheter tricuspid repair? JACC Cardiovasc. Interv. 10:1982–1990, 2017.CrossRefGoogle Scholar
  36. 36.
    Toma, M., C. H. T. Bloodworth, D. R. Einstein, E. L. Pierce, R. P. Cochran, A. P. Yoganathan, and K. S. Kunzelman. High-resolution subject-specific mitral valve imaging and modeling: experimental and computational methods. Biomech. Model. Mechanobiol. 15:1619–1630, 2016.CrossRefGoogle Scholar
  37. 37.
    Toma, M., C. H. T. Bloodworth, E. L. Pierce, D. R. Einstein, R. P. Cochran, A. P. Yoganathan, and K. S. Kunzelman. Fluid-Structure Interaction Analysis of Ruptured Mitral Chordae Tendineae. Ann. Biomed. Eng. 2016Google Scholar
  38. 38.
    Toma, M., D. R. Einstein, C. H. Bloodworth, R. P. Cochran, A. P. Yoganathan, and K. S. Kunzelman. Fluid–structure interaction and structural analyses using a comprehensive mitral valve model with 3D chordal structure. Int. J. Numer. Method Biomed. Eng. 33:e2815, 2017.CrossRefGoogle Scholar
  39. 39.
    Toma, M., M. O. Jensen, D. R. Einstein, A. P. Yoganathan, R. P. Cochran, and K. S. Kunzelman. Fluid-structure interaction analysis of papillary muscle forces using a comprehensive mitral valve model with 3D chordal structure. Ann. Biomed. Eng. 44:942–953, 2016.CrossRefGoogle Scholar
  40. 40.
    Troxler, L. G., E. M. Spinner, and A. P. Yoganathan. Measurement of strut chordal forces of the tricuspid valve using miniature C ring transducers. J. Biomech. 45:1084–1091, 2012.CrossRefGoogle Scholar
  41. 41.
    Wriggers, P. Computational Contact Mechanics. Berlin: Springer, 2006.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.The Wallace H. Coulter School of Biomedical EngineeringGeorgia Institute of Technology & Emory UniversityAtlantaUSA
  2. 2.Department of Mechanical Engineering, School of Engineering & Computing SciencesNew York Institute of TechnologyNew YorkUSA

Personalised recommendations