Advertisement

Explicit Modeling of White Matter Axonal Fiber Tracts in a Finite Element Brain Model

  • Taotao Wu
  • Ahmed Alshareef
  • J. Sebastian Giudice
  • Matthew B. PanzerEmail author
State-of-the-Art Modeling and Simulation of the Brain's Response to Mechanical Loads

Abstract

Many human brain finite element (FE) models lack mesoscopic (~ 1 mm) white matter structures, which may limit their capability in predicting TBI and assessing tissue-based injury metrics such as axonal strain. This study investigated an embedded method to explicitly incorporate white matter axonal fibers into an existing 50th percentile male brain model. The white matter was decomposed into myelinated axon tracts and an isotropic ground substance that had similar material properties to gray matter. The axon tract bundles were derived from a population-based tractography template explicitly modeled using 1-D cable elements. The axonal fibers and ground substance material were implemented using hyper-viscoelastic constitutive models, which were calibrated using white and gray matter brain tissue material testing data available in the literature. Finally, the new axon-based model was extensively validated for brain-skull relative deformation under various loading conditions (n = 17) and showed good biofidelity compared to other brain models. Through these analyses, we demonstrated the applicability of this method for incorporating axonal fiber tracts into an existing FE brain model. The axon-based model will be a useful tool for understanding the mechanisms of TBI, evaluating tissue-based injury metrics, and developing injury mitigation systems.

Keywords

Traumatic brain injury Axonal fibers Brain model Finite element model validation 

Notes

Acknowledgments

Diffusion MRI data were provided in part by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. The research presented in this paper was made possible in part by a grant from Football Research, Inc. (FRI). The views expressed are solely those of the authors and do not represent those of FRI or any of its affiliates or funding sources.

Conflict of interest

No competing financial interests exist.

Supplementary material

10439_2019_2239_MOESM1_ESM.docx (3.7 mb)
Supplementary material 1 (DOCX 3752 kb)

References

  1. 1.
    Alshareef, A., J. S. Giudice, J. Forman, R. S. Salzar, and M. B. Panzer. A novel method for quantifying human in situ whole brain deformation under rotational loading using sonomicrometry. J. Neurotrauma 35:780–789, 2017.CrossRefGoogle Scholar
  2. 2.
    Arbogast, K. B., and S. S. Margulies. Regional differences in mechanical properties of the porcine central nervous system. SAE Technical Paper, 1997.Google Scholar
  3. 3.
    Bermejo, M., A. P. Santos, and J. M. Goicolea. Development of practical finite element models for collapse of reinforced concrete structures and experimental validation. Shock Vib. 2017.  https://doi.org/10.1155/2017/4636381.Google Scholar
  4. 4.
    Besl, P. J., and N. D. McKay. Method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Intell. 14(2):239–256, 1992.CrossRefGoogle Scholar
  5. 5.
    Bilston, L. E., Z. Liu, and N. Phan-Thien. Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model. Biorheology 38:335–345, 2001.Google Scholar
  6. 6.
    Brands, D. W., P. H. Bovendeerd, G. W. Peters, J. S. Wismans, M. H. Paas, and J. L. van Bree. Comparison of the dynamic behavior of brain tissue and two model materials. SAE Technical Paper, 1999.Google Scholar
  7. 7.
    Bryan, R., P. S. Mohan, A. Hopkins, F. Galloway, M. Taylor, and P. B. Nair. Statistical modelling of the whole human femur incorporating geometric and material properties. Med. Eng. Phys. 32:57–65, 2010.CrossRefGoogle Scholar
  8. 8.
    Budday, S., R. Nay, R. de Rooij, P. Steinmann, T. Wyrobek, T. C. Ovaert, and E. Kuhl. Mechanical properties of gray and white matter brain tissue by indentation. J. Mech. Behav. Biomed. Mater. 46:318–330, 2015.CrossRefGoogle Scholar
  9. 9.
    Budday, S., G. Sommer, C. Birkl, C. Langkammer, J. Haybaeck, J. Kohnert, M. Bauer, F. Paulsen, P. Steinmann, E. Kuhl, et al. Mechanical characterization of human brain tissue. Acta Biomater. 48:319–340, 2017.CrossRefGoogle Scholar
  10. 10.
    Centers for Disease Control and Prevention. Report to congress on traumatic brain injury in the United States: epidemiology and rehabilitation, 2015.Google Scholar
  11. 11.
    Chatelin, S., A. Constantinesco, and R. Willinger. Fifty years of brain tissue mechanical testing: from in vitro to in vivo investigations. Biorheology 47:255–276, 2010.Google Scholar
  12. 12.
    Chatelin, S., C. Deck, and R. Willinger. An anisotropic viscous hyperelastic constitutive law for brain material finite-element modeling. J. Biorheol. 27:26–37, 2013.CrossRefGoogle Scholar
  13. 13.
    Cloots, R. J., J. Van Dommelen, S. Kleiven, and M. Geers. Multi-scale mechanics of traumatic brain injury: predicting axonal strains from head loads. Biomech. Model. Mechanobiol. 12:137–150, 2013.CrossRefGoogle Scholar
  14. 14.
    Davis, M. L., B. Koya, J. M. Schap, and F. S. Gayzik. Development and full body validation of a 5th percentile female finite element model. SAE Technical Paper, 2016.Google Scholar
  15. 15.
    Feng, Y., R. J. Okamoto, R. Namani, G. M. Genin, and P. V. Bayly. Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23:117–132, 2013.CrossRefGoogle Scholar
  16. 16.
    Fish, J. The s-version of the finite element method. Comput. Struct. 43:539–547, 1992.CrossRefGoogle Scholar
  17. 17.
    Fung, Y. Biomechanics: mechanical properties of living tissues. Berlin: Springer Science & Business Media, 2013.Google Scholar
  18. 18.
    Gabler, L. F., J. R. Crandall, and M. B. Panzer. Assessment of kinematic brain injury metrics for predicting strain responses in diverse automotive impact conditions. Ann. Biomed. Eng. 44(12):3705–3718, 2016.CrossRefGoogle Scholar
  19. 19.
    Gabler, L. F., J. R. Crandall, and M. B. Panzer. Development of a metric for predicting brain strain responses using head kinematics. Ann. Biomed. Eng. 46(7):972–985, 2018.CrossRefGoogle Scholar
  20. 20.
    Gabler, L. F., H. Joodaki, J. R. Crandall, and M. B. Panzer. Development of a single-degree-of-freedom mechanical model for predicting strain-based brain injury responses. J. Biomech. Eng. 140:031002, 2018.CrossRefGoogle Scholar
  21. 21.
    Ganpule, S., N. P. Daphalapurkar, K. T. Ramesh, A. K. Knutsen, D. L. Pham, P. V. Bayly, and J. L. Prince. A three-dimensional computational human head model that captures live human brain dynamics. J. Neurotrauma 34:2154–2166, 2017.CrossRefGoogle Scholar
  22. 22.
    Garimella, H. T., and R. H. Kraft. Modeling the mechanics of axonal fiber tracts using the embedded finite element method. Int. J. Numer. Methods Biomed. Eng. 33:e2823, 2017.CrossRefGoogle Scholar
  23. 23.
    Garo, A., M. Hrapko, J. Van Dommelen, and G. Peters. Towards a reliable characterisation of the mechanical behaviour of brain tissue: the effects of post-mortem time and sample preparation. Biorheology 44:51–58, 2007.Google Scholar
  24. 24.
    Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35, 2006.CrossRefGoogle Scholar
  25. 25.
    Gehre, C., H. Gades, and P. Wernicke. Objective rating of signals using test and simulation responses. Washington, DC: National Highway Traffic Safety Administration, 2009.Google Scholar
  26. 26.
    Gennarelli, T. A., L. Thibault, and A. K. Ommaya. Pathophysiologic responses to rotational and translational accelerations of the head. SAE Technical Paper, 1972.Google Scholar
  27. 27.
    Giordano, C., and S. Kleiven. Evaluation of axonal strain as a predictor for mild traumatic brain injuries using finite element modeling. SAE Technical Paper, 2014.Google Scholar
  28. 28.
    Giordano, C., and S. Kleiven. Connecting fractional anisotropy from medical images with mechanical anisotropy of a hyperviscoelastic fibre-reinforced constitutive model for brain tissue. J. R. Soc. Interface 11:20130914, 2014.CrossRefGoogle Scholar
  29. 29.
    Giudice, J. S., W. Zeng, T. Wu, A. Alshareef, D. F. Shedd, and M. B. Panzer. An analytical review of the numerical methods used for finite element modeling of traumatic brain injury. Biomed. Eng Ann 2018.  https://doi.org/10.1007/s10439-018-02161-5.Google Scholar
  30. 30.
    Golman, A., A. Wickwire, T. Harrigan, A. Iwaskiw, R. Armiger, and A. Merkle. Hierarchical model validation of the falx cerebri and tentorium cerebelli. In: Proceedings of the forty first international workshop (2013).Google Scholar
  31. 32.
    Hardy, W. N., C. D. Foster, M. J. Mason, K. H. Yang, A. I. King, and S. Tashman. Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. SAE Technical Paper, 2001.Google Scholar
  32. 31.
    Hardy, W. N., M. J. Mason, C. D. Foster, C. S. Shah, J. M. Kopacz, K. H. Yang, A. I. King, J. Bishop, M. Bey, W. Anderst, and S. Tashman. A study of the response of the human cadaver head to impact. Stapp Car Crash J. 51:17–80, 2007.Google Scholar
  33. 33.
    Holzapfel, G. A., and R. W. Ogden. On the tension–compression switch in soft fibrous solids. Eur. J. Mech. - ASolids 49:561–569, 2015.CrossRefGoogle Scholar
  34. 34.
    Holzapfel, G. A., and R. W. Ogden. On fiber dispersion models: exclusion of compressed fibers and spurious model comparisons. J. Elast. 129:49–68, 2017.CrossRefGoogle Scholar
  35. 35.
    Hrapko, M., J. Van Dommelen, G. Peters, and J. Wismans. The mechanical behaviour of brain tissue: large strain response and constitutive modelling. Biorheology 43:623–636, 2006.Google Scholar
  36. 36.
    Jin, X., J. B. Lee, L. Y. Leung, L. Zhang, K. H. Yang, and A. I. King. Biomechanical Response of the Bovine Pia-Arachnoid Complex to Tensile Loading at Varying Strain Rates. SAE Technical Paper, 2006.Google Scholar
  37. 37.
    Jin, X., F. Zhu, H. Mao, M. Shen, and K. H. Yang. A comprehensive experimental study on material properties of human brain tissue. J. Biomech. 46:2795–2801, 2013.CrossRefGoogle Scholar
  38. 38.
    Johnson, C. L., M. D. McGarry, A. A. Gharibans, J. B. Weaver, K. D. Paulsen, H. Wang, W. C. Olivero, B. P. Sutton, and J. G. Georgiadis. Local mechanical properties of white matter structures in the human brain. Neuroimage 79:145–152, 2013.CrossRefGoogle Scholar
  39. 39.
    Jones, D. K., T. R. Knösche, and R. Turner. White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254, 2013.CrossRefGoogle Scholar
  40. 40.
    Kleiven, S., and W. N. Hardy. Correlation of an FE model of the human head with local brain motion: Consequences for injury prediction. Stapp Car Crash J. 46:123–144, 2002.Google Scholar
  41. 41.
    Latorre, M., and F. J. Montáns. Stress and strain mapping tensors and general work-conjugacy in large strain continuum mechanics. Appl. Math. Model. 40:3938–3950, 2016.CrossRefGoogle Scholar
  42. 42.
    Lippert, S. A., E. M. Rang, and M. J. Grimm. The high frequency properties of brain tissue. Biorheology 41:681–691, 2004.Google Scholar
  43. 43.
    Maier-Hein, K., P. Neher, J.-C. Houde, M.-A. Cote, E. Garyfallidis, J. Zhong, M. Chamberland, F.-C. Yeh, Y. C. Lin, Q. Ji, et al. The challenge of mapping the human connectome based on diffusion tractography. Nat Commun. 8(1):1349, 2017.CrossRefGoogle Scholar
  44. 44.
    Mao, H., L. Zhang, B. Jiang, V. V. Genthikatti, X. Jin, F. Zhu, R. Makwana, A. Gill, G. Jandir, A. Singh, and K. H. Yang. Development of a finite element human head model partially validated with thirty five experimental cases. J. Biomech. Eng. 135:111002, 2013.CrossRefGoogle Scholar
  45. 45.
    Meaney, D. F., and D. H. Smith. Biomechanics of concussion. Clin. Sports Med. 30:19–31, 2011.CrossRefGoogle Scholar
  46. 46.
    Miller, L. E., J. E. Urban, and J. D. Stitzel. Development and validation of an atlas-based finite element brain model. Biomech. Model. Mechanobiol. 15:1201–1214, 2016.CrossRefGoogle Scholar
  47. 47.
    Nicolle, S., M. Lounis, and R. Willinger. Shear properties of brain tissue over a frequency range relevant for automotive impact situations: new experimental results. SAE Technical Paper, 2004.Google Scholar
  48. 48.
    Nilsson, M., J. Lätt, F. St\a ahlberg, D. van Westen, and H. akan Hagslätt. The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study. NMR Biomed. 25:795–805, 2012.CrossRefGoogle Scholar
  49. 49.
    Ning, X., Q. Zhu, Y. Lanir, and S. S. Margulies. A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation. J. Biomech. Eng. 128:925–933, 2006.CrossRefGoogle Scholar
  50. 50.
    Park, G., T. Kim, J. Forman, M. B. Panzer, and J. R. Crandall. Prediction of the structural response of the femoral shaft under dynamic loading using subject-specific finite element models. Comput. Methods Biomech. Biomed. Engin. 20:1151–1166, 2017.CrossRefGoogle Scholar
  51. 51.
    Pervin, F., and W. W. Chen. Dynamic mechanical response of bovine gray matter and white matter brain tissues under compression. J. Biomech. 42:731–735, 2009.CrossRefGoogle Scholar
  52. 52.
    Peters, G., J. Meulman, and A. Sauren. The applicability of the time/temperature superposition principle to brain tissue. Biorheology 34:127–138, 1997.CrossRefGoogle Scholar
  53. 53.
    Prange, M. T., and S. S. Margulies. Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124:244–252, 2002.CrossRefGoogle Scholar
  54. 54.
    Sahoo, D., C. Deck, and R. Willinger. Development and validation of an advanced anisotropic visco-hyperelastic human brain FE model. J. Mech. Behav. Biomed. Mater. 33:24–42, 2014.CrossRefGoogle Scholar
  55. 55.
    Sahoo, D., C. Deck, and R. Willinger. Brain injury tolerance limit based on computation of axonal strain. Accid. Anal. Prev. 92:53–70, 2016.CrossRefGoogle Scholar
  56. 56.
    Sanchez, E. J., L. F. Gabler, A. B. Good, J. R. Funk, J. R. Crandall, and M. B. Panzer. A reanalysis of football impact reconstructions for head kinematics and finite element modeling. Clin: Biomech, 2018.  https://doi.org/10.1016/j.clinbiomech.2018.02.019.CrossRefGoogle Scholar
  57. 57.
    Sanchez, E. J., L. F. Gabler, J. S. McGhee, A. V. Olszko, V. C. Chancey, J. R. Crandall, and M. B. Panzer. Evaluation of head and brain injury risk functions using sub-injurious human volunteer data. J. Neurotrauma 34:2410–2424, 2017.CrossRefGoogle Scholar
  58. 58.
    Shen, F., T. Tay, J. Li, S. Nigen, P. Lee, and H. Chan. Modified Bilston nonlinear viscoelastic model for finite element head injury studies. J. Biomech. Eng. 128:797–801, 2006.CrossRefGoogle Scholar
  59. 59.
    Tabatabaei, S., and S. V. Lomov. Eliminating the volume redundancy of embedded elements and yarn interpenetrations in meso-finite element modelling of textile composites. Comput. Struct. 152:142–154, 2015.CrossRefGoogle Scholar
  60. 60.
    Takhounts, E.G., S.A. Ridella, V. Hasija, R.E. Tannous, J.Q. Campbell, D. Malone, K. Danelson, J.Stitzel, S. Rowson, and S. Duma. Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model. SAE Technical Paper, 2008.Google Scholar
  61. 61.
    Thibault, K. L., and S. S. Margulies. Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J. Biomech. 31:1119–1126, 1998.CrossRefGoogle Scholar
  62. 62.
    Velardi, F., F. Fraternali, and M. Angelillo. Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 5:53–61, 2006.CrossRefGoogle Scholar
  63. 63.
    Wright, R. M., A. Post, B. Hoshizaki, and K. T. Ramesh. A multiscale computational approach to estimating axonal damage under inertial loading of the head. J. Neurotrauma 30(2):102–118, 2013.CrossRefGoogle Scholar
  64. 64.
    Yeh, F.-C., S. Panesar, D. Fernandes, A. Meola, M. Yoshino, J. C. Fernandez-Miranda, J. M. Vettel, and T. Verstynen. Population-averaged atlas of the macroscale human structural connectome and its network topology. NeuroImage 178:57–68, 2018.CrossRefGoogle Scholar
  65. 65.
    Zhao, W., B. Choate, and S. Ji. Material properties of the brain in injury-relevant conditions–Experiments and computational modeling. J. Mech. Behav. Biomed. Mater. 80:222–234, 2018.CrossRefGoogle Scholar
  66. 66.
    Zhao, W., and S. Ji. White matter anisotropy for impact simulation and response sampling in traumatic brain injury. J. Neurotrauma 36(2):250–263, 2018.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • Taotao Wu
    • 1
  • Ahmed Alshareef
    • 1
  • J. Sebastian Giudice
    • 1
  • Matthew B. Panzer
    • 1
    Email author
  1. 1.Center for Applied BiomechanicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations