Annals of Biomedical Engineering

, Volume 47, Issue 5, pp 1237–1249 | Cite as

Computational Models for the Mechanical Investigation of Stomach Tissues and Structure

  • Chiara Giulia FontanellaEmail author
  • Claudia Salmaso
  • Ilaria Toniolo
  • Niccolò de Cesare
  • Alessandro Rubini
  • Giulia Maria De Benedictis
  • Emanuele Luigi Carniel


Bariatric surgery is performed on obese people aiming at reducing the capacity of the stomach and/or the absorbing capability of the gastrointestinal tract. A more reliable and effective approach to bariatric surgery may integrate different expertise, in the areas of surgery, physiology and biomechanics, availing of a strong cooperation between clinicians and engineers. This work aimed at developing a computational model of the stomach, as a computational tool for the physio-mechanical investigation of stomach functionality and the planning of bariatric procedures. In this sense, coupled experimental and numerical activities were developed. Experimental investigations on pig and piglet stomachs aimed at providing information about stomach geometrical configuration and structural behavior. The computational model was defined starting from the analysis of data from histo-morphometric investigations and mechanical tests. A fiber-reinforced visco-hyperelastic constitutive model was developed to interpret the mechanical response of stomach tissues; constitutive parameters were identified considering mechanical tests at both tissue and structure levels. Computational analyses were performed to investigate the pressure–volume behavior of the stomach. The developed model satisfactorily interpreted results from experimental activities, suggesting its reliability. Furthermore, the model was exploited to investigate stress and strain fields within gastric tissues, as the stimuli for mechanoreceptors that interact with the central nervous system leading to the feeling of satiety. In this respect, the developed computational model may be employed to evaluate the influence of bariatric intervention on the stimulation of mechanoreceptors, and the following meal induced satiety.


Stomach mechanics Experimental methods Anisotropic constitutive formulation Constitutive parameters Computational biomechanics 



The authors warrant that the article is the authors’ original work, hasn’t received prior publication and isn’t under consideration for publication elsewhere. No specifying funding was received to support the reported research activities.


  1. 1.
    Anderson, A. E., C. L. Peters, B. D. Tuttle, and J. A. Weiss. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J. Biomech. Eng. 127:364–373, 2005.CrossRefGoogle Scholar
  2. 2.
    Aydin, R. C., S. Brandstaeter, F. A. Braeu, M. Steigenberger, R. P. Marcus, K. Nikolaou, M. Notohamiprodjo, and C. J. Cyron. Experimental characterization of the biaxial mechanical properties of porcine gastric tissue. J. Mech. Behav. Biomed. Mater. 74:499–506, 2017.CrossRefGoogle Scholar
  3. 3.
    Bellini, C., P. Glass, M. Sitti, and E. S. Di Martino. Biaxial mechanical modeling of the small intestine. J. Mech. Behav. Biomed. 4:1727–1740, 2011.CrossRefGoogle Scholar
  4. 4.
    Berenson, G. S. Health Consequences of Obesity. Pediatr. Blood Cancer 58:117–121, 2012.CrossRefGoogle Scholar
  5. 5.
    Burton, P. R., W. A. Brown, C. Laurie, M. Richards, G. Hebbard, and P. E. O’Brien. Effects of gastric band adjustments on intraluminal pressure. Obes. Surg. 19:1508–1514, 2009.CrossRefGoogle Scholar
  6. 6.
    Carmagnola, S., P. Cantù, and R. Penagini. Mechanoreceptors of the Proximal Stomach and Perception of Gastric Distension. Am. J. Gastroenterol. 100:1704–1710, 2005.CrossRefGoogle Scholar
  7. 7.
    Carniel, E. L., C. G. Fontanella, L. Polese, S. Merigliano, and A. N. Natali. Computational tools for the analysis of mechanical functionality of gastrointestinal structures. Technol. Health Care 21:271–283, 2013.Google Scholar
  8. 8.
    Carniel, E. L., C. G. Fontanella, C. Stefanini, and A. N. Natali. A procedure for the computational investigation of stress-relaxation phenomena. Mech. Time-Depend. Mater. 17:25–38, 2013.CrossRefGoogle Scholar
  9. 9.
    Carniel, E. L., A. Frigo, C. G. Fontanella, G. M. De Benedictis, A. Rubini, L. Barp, G. Pluchino, B. Sabbadini, and L. Polese. A biomechanical approach to the analysis of methods and procedures of bariatric surgery. J. Biomech. 56:32–41, 2017.CrossRefGoogle Scholar
  10. 10.
    Carniel, E. L., V. Gramigna, C. G. Fontanella, C. Stefanini, and A. N. Natali. Constitutive formulations for the mechanical investigation of colonic tissues. J. Biomed. Mater. Res. A 102:1243–1254, 2014.CrossRefGoogle Scholar
  11. 11.
    Carniel, E. L., M. Mencattelli, G. Bonsignori, C. G. Fontanella, A. Frigo, A. Rubini, C. Stefanini, and A. N. Natali. Analysis of the structural behaviour of colonic segments by inflation tests: experimental activity and physio-mechanical model. Proc. Inst. Mech. Eng. H 229:794–803, 2015.CrossRefGoogle Scholar
  12. 12.
    Carniel, E. L., A. Rubini, A. Frigo, and A. N. Natali. Analysis of the biomechanical behaviour of gastrointestinal regions adopting an experimental and computational approach. Comput. Methods Programs Biomed. 113:338–345, 2014.CrossRefGoogle Scholar
  13. 13.
    Chang, S. H., C. R. Stoll, J. Song, J. E. Varela, C. J. Eagon, and G. A. Colditz. The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003–2012. JAMA Surg. 149:275–287, 2014.CrossRefGoogle Scholar
  14. 14.
    Ciarletta, P., P. Dario, F. Tendick, and S. Micera. Hyperelastic model of anisotropic fiber reinforcements within intestinal walls for applications in medical robotics. Int. J. Robot. Res. 28:1279–1288, 2009.CrossRefGoogle Scholar
  15. 15.
    Colville, T. P., and J. M. Bassert. Clinical Anatomy and Physiology for Veterinary Technicians (3rd ed.). St. Louis: Elsevier, 2015.Google Scholar
  16. 16.
    Dario, P., P. Ciarletta, A. Menciassi, and B. Kim. Modelling and experimental validation of the locomotion of endoscopic robots in the colon. Int. J. Robot. Res. 23:549–556, 2004.CrossRefGoogle Scholar
  17. 17.
    Donahue, T. L., M. L. Hull, M. M. Rashid, and C. R. Jacobs. A finite element model of the human knee joint for the study of tibio-femoral contact. J. Biomech. Eng. 124:273–280, 2002.CrossRefGoogle Scholar
  18. 18.
    Egorov, V. I., I. V. Schastlivtsev, E. V. Prut, A. O. Baranov, and R. A. Turusov. Mechanical properties of the human gastrointestinal tract. J. Biomech. 35:1417–1425, 2002.CrossRefGoogle Scholar
  19. 19.
    Fallah, A., M. T. Ahmadian, K. Firozbakhsh, and M. M. Aghdam. Micromechanical modeling of rate-dependent behavior of connective tissues. J. Theor. Biol. 416:119–128, 2017.CrossRefGoogle Scholar
  20. 20.
    Ferrua, M. J., and R. P. Singh. Modeling the fluid dynamics in a human stomach to gain insight of food digestion. J. Food Sci. 75:R151–R162, 2010.CrossRefGoogle Scholar
  21. 21.
    Fung, Y. C. Biomechanics. New York: Springer, 1993.CrossRefGoogle Scholar
  22. 22.
    Furness, J. B., B. P. Callaghan, L. R. Rivera, and H. J. Cho. The enteric nervous system and gastrointestinal innervation: integrated local and central control. In: Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology, Vol. 817, edited by M. Lyte, and J. F. Cryan. New York: Springer, 2014.Google Scholar
  23. 23.
    Gao, F., D. Liao, J. Zhao, A. M. Drewes, and H. Gregersen. Numerical analysis of pouch filling and emptying after laparoscopic gastric banding surgery. Obes. Surg. 18:243–250, 2008.CrossRefGoogle Scholar
  24. 24.
    Gloy, V. L., M. Briel, D. L. Bhatt, S. R. Kashyap, P. R. Schauer, G. Mingrone, H. C. Bucher, and A. J. Nordmann. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. BMJ 347:f5934, 2013.CrossRefGoogle Scholar
  25. 25.
    Gravetter, F. J., and L. B. Wallnau. Statistic for the Behavioral Sciences (8th ed.). Belmont, CA: Wadsworth/Cenage Learning, 2009.Google Scholar
  26. 26.
    Gregersen, H., J. L. Emery, and A. D. McCulloch. History-dependent mechanical behavior of guinea-pig small intestine. Ann. Biomed. Eng. 26:850–858, 1998.CrossRefGoogle Scholar
  27. 27.
    Holzapfel, G. A. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Chichester: Wiley, 2000.Google Scholar
  28. 28.
    Janssen, P., S. Verschueren, H. G. Ly, R. Vos, L. Van Oudenhove, and J. Tack. Intragastric pressure during food intake: a physiological and minimally invasive method to assess gastric accommodation. Neurogastroenterol. Motil. 23:316–322, 2011.CrossRefGoogle Scholar
  29. 29.
    Jia, Z. G., W. Li, and Z. R. Zhou. Mechanical characterization of stomach tissue under uniaxial tensile action. J. Biomech. 48:651–658, 2015.CrossRefGoogle Scholar
  30. 30.
    Kampe, J., A. Stefanidis, S. H. Lockie, W. A. Brown, J. B. Dixon, A. Odoi, S. J. Spencer, J. Raven, and B. J. Oldfield. Neural and humoral changes associated with the adjustable gastric band: insights from a rodent model. Int. J. Obes. (London) 36:1403–1411, 2012.CrossRefGoogle Scholar
  31. 31.
    Kelly, K. A. Gastric emptying of liquids and solids: roles of proximal and distal stomach. Am. J. Physiol. 239:G71–G76, 1980.Google Scholar
  32. 32.
    Kitahara, C. M., A. J. Flint, A. Berrington-de-Gonzalez, L. Bernstein, M. Brotzman, R. J. MacInnis, S. C. Moore, K. Robien, P. S. Rosenberg, P. N. Singh, E. Weiderpass, H. O. Adami, H. Anton-Culver, R. Ballard-Barbash, J. E. Buring, D. M. Freedman, G. E. Fraser, L. E. Beane-Freeman, S. M. Gapstur, J. M. Gaziano, G. G. Giles, N. Håkansson, J. A. Hoppin, F. B. Hu, K. Koenig, M. S. Linet, Y. Park, A. V. Patel, M. P. Purdue, C. Schairer, H. D. Sesso, K. Visvanathan, E. White, A. Wolk, A. Zeleniuch-Jacquotte, and P. Hartge. Association between class III obesity (BMI of 40–59 kg/m2) and mortality: a pooled analysis of 20 prospective studies. PLoS Med. 11:1001673, 2014.CrossRefGoogle Scholar
  33. 33.
    Lehnert, T., D. Sonntag, A. Konnopka, S. Riedel-Heller, and H. H. König. Economic costs of overweight and obesity. Best Pract. Res. Clin. Endocrinol. Metab. 27:105–115, 2013.CrossRefGoogle Scholar
  34. 34.
    Marieb, E. N., and K. Hoehn. Human Anatomy and Physiology (7th ed.). San Francisco: Pearson International Edition, 2007.Google Scholar
  35. 35.
    Miftahof, R. N. Biomechanics of the Human Stomach. Cham: Springer, 2017.CrossRefGoogle Scholar
  36. 36.
    Mingrone, G., S. Panunzi, A. De Gaetano, C. Guidone, A. Iaconelli, G. Nanni, M. Castagneto, S. Bornstein, and F. Rubino. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet 386:964–973, 2015.CrossRefGoogle Scholar
  37. 37.
    Natali, A. N., E. L. Carniel, C. G. Fontanella, A. Frigo, S. Todros, A. Rubini, G. M. De Benedictis, M. A. Cerruto, and W. Artibani. Mechanics of the urethral duct: tissue constitutive formulation and structural modeling for the investigation of lumen occlusion. Biomech. Model. Mechanobiol. 16:439–447, 2017.CrossRefGoogle Scholar
  38. 38.
    Natali, A. N., E. L. Carniel, A. Frigo, C. G. Fontanella, A. Rubini, Y. Avital, and G. M. De Benedictis. Experimental investigation of the structural behavior of equine urethra. Comput. Methods Programs Biomed. 141:35–41, 2017.CrossRefGoogle Scholar
  39. 39.
    Natali, A. N., E. L. Carniel, A. Frigo, P. G. Pavan, S. Todros, P. Pachera, C. G. Fontanella, A. Rubini, L. Cavicchioli, Y. Avital, and G. M. De Benedictis. Experimental investigation of the biomechanics of urethral tissues and structures. Exp. Physiol. 101:641–656, 2016.CrossRefGoogle Scholar
  40. 40.
    Natali, A. N., C. G. Fontanella, and E. L. Carniel. Constitutive formulation and numerical analysis of the heel pad region. Comput. Methods Biomech. Biomed. Eng. 15:401–409, 2012.CrossRefGoogle Scholar
  41. 41.
    Palanca, M., G. Tozzi, and L. Cristofolini. The use of digital image correlation in the biomechanical area: a review. Int. Biomech. 3:1–21, 2016.CrossRefGoogle Scholar
  42. 42.
    Phillips, R. J., and T. L. Powley. Tension and stretch receptors in gastrointestinal smooth muscle: re-evaluating vagal mechanoreceptor electrophysiology. Brain Res. Brain Res. Rev. 34:1–26, 2000.CrossRefGoogle Scholar
  43. 43.
    Pories, W. J. Bariatric surgery: risks and rewards. J. Clin. Endocrinol. Metab. 93:S89–S96, 2008.CrossRefGoogle Scholar
  44. 44.
    Powley, T. L., C. N. Hudson, J. L. McAdams, E. A. Baronowsky, F. N. Martin, J. K. Mason, and R. J. Phillips. Organization of vagal afferents in pylorus: mechanoreceptors arrayed for high sensitivity and fine spatial resolution? Auton. Neurosci. 183:36–48, 2014.CrossRefGoogle Scholar
  45. 45.
    Rolls, B. J., V. H. Castellanos, J. C. Halford, A. Kilara, D. Panyam, C. L. Pelkman, G. P. Smith, and M. L. Thorwart. Volume of food consumed affects satiety in men. Am. J. Clin. Nutr. 67:1170–1177, 1998.CrossRefGoogle Scholar
  46. 46.
    Schauer, P. R., S. R. Kashyap, K. Wolski, S. A. Brethauer, J. P. Kirwan, C. E. Pothier, S. Thomas, B. Abood, S. E. Nissen, and D. L. Bhatt. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N. Engl. J. Med. 366:1567–1576, 2012.CrossRefGoogle Scholar
  47. 47.
    Screen, H. R., S. Toorani, and J. C. Shelton. Microstructural stress relaxation mechanics in functionally different tendons. Med. Eng. Phys. 35:96–102, 2013.CrossRefGoogle Scholar
  48. 48.
    Simo, J. C., and T. J. R. Hughes. Computational Inelasticity. New York: Springer, 1998.Google Scholar
  49. 49.
    Sunyer, F. X. P. Health implications of obesity. Am. J. Clin. Nutr. 53:1595S–1603S, 1991.CrossRefGoogle Scholar
  50. 50.
    Wang, F. B., and T. L. Powley. Topographic inventories of vagal afferents in gastrointestinal muscle. J. Comp. Neurol. 421:302–324, 2000.CrossRefGoogle Scholar
  51. 51.
    Wang, G. J., D. Tomasi, W. Backus, R. Wang, F. Telang, A. Geliebter, J. Korner, A. Bauman, J. S. Fowler, K. Panayotis, P. K. Thanos, and N. D. Volkow. Gastric distention activates satiety circuitry in the human brain. NeuroImage 39:1824–1831, 2008.CrossRefGoogle Scholar
  52. 52.
    Weiss, J. A., B. N. Makerc, and S. Govindjeed. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods. Appl. Mech. Eng. 135:107–128, 1996.CrossRefGoogle Scholar
  53. 53.
    Woods, S. C. Gastrointestinal satiety signals I. An overview of gastrointestinal signals that influence food intake. Am. J. Physiol. Gastrointest. Liver Physiol. 286:7–13, 2004.CrossRefGoogle Scholar
  54. 54.
    Yang, W., T. C. Fung, K. S. Chian, and C. K. Chong. Viscoelasticity of esophageal tissue and application of a QLV model. J. Biomech. Eng. 128:909–916, 2006.CrossRefGoogle Scholar
  55. 55.
    Zagorodnyuk, V. P., B. N. Chen, and S. J. H. Brookes. Intraganglionic laminar endings are mechanotransduction sites of vagal tension receptors in the guinea-pig stomach. J. Physiol. 534:255–268, 2001.CrossRefGoogle Scholar
  56. 56.
    Zhao, J., D. Liao, P. Chen, P. Kunwald, and H. Gregersen. Stomach stress and strain depend on location, direction and the layered structure. J. Biomech. 41:3441–3447, 2008.CrossRefGoogle Scholar
  57. 57.
    Zienkiewicz, O. C., and R. L. Taylor. The Finite Element Method (5th ed.). Oxford: Butterworth Heinemann, 2000.Google Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • Chiara Giulia Fontanella
    • 1
    • 2
    Email author
  • Claudia Salmaso
    • 2
    • 3
  • Ilaria Toniolo
    • 2
    • 3
  • Niccolò de Cesare
    • 2
    • 3
  • Alessandro Rubini
    • 1
    • 2
  • Giulia Maria De Benedictis
    • 2
    • 4
  • Emanuele Luigi Carniel
    • 2
    • 3
  1. 1.Department of Biomedical SciencesUniversity of PadovaPaduaItaly
  2. 2.Centre for Mechanics of Biological MaterialsUniversity of PadovaPaduaItaly
  3. 3.Department of Industrial EngineeringUniversity of PadovaPaduaItaly
  4. 4.Department of Animal Medicine, Production and HealthUniversity of PadovaLegnaroItaly

Personalised recommendations