Advertisement

IGBT-Based Pulsed Electric Fields Generator for Disinfection: Design and In Vitro Studies on Pseudomonas aeruginosa

  • Andrey Ethan Rubin
  • Klimenty Levkov
  • Osman Berk Usta
  • Martin Yarmush
  • Alexander GolbergEmail author
Article

Abstract

Irreversible electroporation of cell membrane with pulsed electric fields is an emerging physical method for disinfection that aims to reduce the doses and volumes of used antibiotics for wound healing. Here we report on the design of the IGBT-based pulsed electric field generator that enabled eradication of multidrug resistant Pseudomonas aeruginosa PAO1 on the gel. Using a concentric electric configuration we determined that the lower threshold of the electric field required to kill P. aeruginosa PAO1 was 89.28 ± 12.89 V mm−1, when 200 square pulses of 300 µs duration are delivered at 3 Hz. These parameters disinfected 38.14 ± 0.79 mm2 area around the single needle electrode. This study provides a step towards the design of equipment required for multidrug-resistant bacteria disinfection in patients with pulsed electric fields.

Keywords

Multidrug-resistant bacteria IGBT Pulsed electric field Electroporation Pseudomonas aeruginosa PAO1 

Notes

Acknowledgments

The authors acknowledge Bio-National USA-Israel Science Foundation (BSF) for the support of this study.

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Abram, F., J. P. P. M. Smelt, R. Bos, and P. C. Wouters. Modelling and optimization of inactivation of Lactobacillus plantarum by pulsed electric field treatment. J. Appl. Microbiol. 2003.  https://doi.org/10.1046/j.1365-2672.2003.01869.x.Google Scholar
  2. 2.
    Alneami, A. Q., E. G. Khalil, R. A. Mohsien, and A. F. Albeldawi. Effect of electrical current stimulation on Pseudomonas Aeruginosa growth. J. Phys. Conf. Ser. 1003:012112, 2018.CrossRefGoogle Scholar
  3. 3.
    Arena, C. B., M. B. Sano, J. H. Rossmeisl, J. L. Caldwell, P. A. Garcia, M. Rylander, and R. V. Davalos. High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. Biomed. Eng. 10:102, 2011.Google Scholar
  4. 4.
    Bae, S., A. Kwasinski, M. M. Flynn, and R. E. Hebner. High-power pulse generator with flexible output pattern. IEEE Trans. Power Electron. 25:1675–1684, 2010.CrossRefGoogle Scholar
  5. 5.
    Blumrosen, G., A. Abazari, A. Golberg, M. L. Yarmush, and M. Toner. Single-step electrical field strength screening to determine electroporation induced transmembrane transport parameters. Biochim. Biophys. Acta 2041–2049:2016, 1858.Google Scholar
  6. 6.
    Bowler, P. G., B. I. Duerden, and D. G. Armstrong. Wound microbiology and associated approaches to wound management. Clin. Microbiol. Rev. 14(2):244–269, 2001.CrossRefGoogle Scholar
  7. 7.
    Cemazar, M., G. Sersa, W. Frey, D. Miklavcic, and J. Teissié. Recommendations and requirements for reporting on applications of electric pulse delivery for electroporation of biological samples. Bioelectrochemistry 2018.  https://doi.org/10.1016/j.bioelechem.2018.03.005.Google Scholar
  8. 8.
    Church, D., S. Elsayed, O. Reid, B. Winston, and R. Lindsay. Burn wound infections. Clin. Microbiol. Rev. 19:403–434, 2006.CrossRefGoogle Scholar
  9. 9.
    Corovic, S., A. Zupanic, and D. Miklavcic. Numerical modeling and optimization of electric field distribution in subcutaneous tumor treated with electrochemotherapy using needle electrodes. IEEE Trans. Plasma Sci. 2008.  https://doi.org/10.1109/tps.2008.2000996.Google Scholar
  10. 10.
    Dancer, S. J. The role of environmental cleaning in the control of hospital-acquired infection. J. Hosp. Infect. 73:378–385, 2009.CrossRefGoogle Scholar
  11. 11.
    Davalos, R. V., L. M. Mir, and B. Rubinsky. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33:223–231, 2005.CrossRefGoogle Scholar
  12. 12.
    Del Pozo, J. L., M. S. Rouse, J. N. Mandrekar, J. M. Steckelberg, and R. Patel. The electricidal effect: reduction of Staphylococcus and Pseudomonas biofilms by prolonged exposure to low-intensity electrical current. Antimicrob. Agents Chemother. 2009.  https://doi.org/10.1128/aac.00680-08.Google Scholar
  13. 13.
    Fernand, F., L. Rubinsky, A. Golberg, and B. Rubinsky. Variable electric fields for high throughput electroporation protocol design in curvilinear coordinates. Biotechnol. Bioeng. 109:2168–2171, 2012.CrossRefGoogle Scholar
  14. 14.
    Giladi, M., Y. Porat, A. Blatt, E. Shmueli, Y. Wasserman, E. D. Kirson, and Y. Palti. Microbial growth inhibition by alternating electric fields in mice with Pseudomonas aeruginosa lung infection. Antimicrob. Agents Chemother., 2010.  https://doi.org/10.1128/aac.01841-09.Google Scholar
  15. 15.
    Golberg, A., G. F. Broelsch, D. Vecchio, S. Khan, M. R. Hamblin, W. G. Austen, R. L. Sheridan, and M. L. Yarmush. Eradication of multidrug-resistant A. baumannii in burn wounds by antiseptic pulsed electric field. Technology 2:153–160, 2014.CrossRefGoogle Scholar
  16. 16.
    Golberg, A., G. F. Broelsch, D. Vecchio, S. Khan, M. R. M. R. Hamblin, W. G. Austen, R. L. Sheridan, and M. L. Yarmush. Pulsed electric fields for burn wound disinfection in a murine model. J. Burn Care Res. 36(1):7–13, 2014.CrossRefGoogle Scholar
  17. 17.
    Golberg, A., J. Fischer, and B. Rubinsky. The use of irreversible electroporation in food preservation. Berlin: Springer, 2010.CrossRefGoogle Scholar
  18. 18.
    Golberg, A., S. Khan, V. Belov, K. P. Quinn, H. Albadawi, G. Felix Broelsch, M. T. Watkins, I. Georgakoudi, M. Papisov, M. C. Mihm, W. G. Austen, and M. L. Yarmush. Skin rejuvenation with non-invasive pulsed electric fields. Sci. Rep. 5:10187, 2015.CrossRefGoogle Scholar
  19. 19.
    Golberg, A., M. Villiger, G. Felix Broelsch, K. P. Quinn, H. Albadawi, S. Khan, M. T. Watkins, I. Georgakoudi, W. G. Austen, M. Bei, B. E. Bouma, M. C. Mihm, and M. L. Yarmush. Skin regeneration with all accessory organs following ablation with irreversible electroporation. J. Tissue Eng. Regen. Med. 1:100, 2017.  https://doi.org/10.1002/term.2374.Google Scholar
  20. 20.
    Golberg, A., M. Villiger, S. Khan, K. P. Quinn, W. C. Y. Lo, B. E. Bouma, M. C. Mihm, W. G. Austen, and M. L. Yarmush. Preventing scars after injury with partial irreversible electroporation. J. Invest. Dermatol. 136(11):2297–2304, 2016.CrossRefGoogle Scholar
  21. 21.
    Gusbeth, C., W. Frey, H. Volkmann, T. Schwartz, and H. Bluhm. Pulsed electric field treatment for bacteria reduction and its impact on hospital wastewater. Chemosphere 2009.  https://doi.org/10.1016/j.chemosphere.2008.11.066.Google Scholar
  22. 22.
    Hashimoto, M. C. E., R. A. Prates, I. T. Kato, S. C. Núñez, L. C. Courrol, and M. S. Ribeiro. Antimicrobial photodynamic therapy on drug-resistant Pseudomonas aeruginosa-induced infection. An in vivo study. Photochem. Photobiol. 88:590–595, 2012.CrossRefGoogle Scholar
  23. 23.
    Ho, S. Y., G. S. Mittal, J. D. Cross, and M. W. Griffiths. Inactivation of Pseudomonas fluorescens by high voltage electric pulses. J. Food Sci. 60:1337–1340, 1995.CrossRefGoogle Scholar
  24. 24.
    Hofmann, G. A. Instrumentation and electrodes for in vivo electroporation. In: Electrochemotherapy, Electrogenetherapy, and Transdermal Drug Delivery, edited by R. Heller, and R. Gilbert. Totowa, NJ: Humana Press, 2000, pp. 37–61.  https://doi.org/10.1385/1-59259-080-2:37.CrossRefGoogle Scholar
  25. 25.
    Kaplan, J. B., C. Ragunath, K. Velliyagounder, D. H. Fine, and N. Ramasubbu. Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 48:2633–2636, 2004.CrossRefGoogle Scholar
  26. 26.
    Korem, M., N. S. Goldberg, A. Cahan, M. J. Cohen, I. Nissenbaum, and A. E. Moses. Clinically applicable irreversible electroporation for eradication of micro-organisms. Lett. Appl. Microbiol. 67:15–21, 2018.CrossRefGoogle Scholar
  27. 27.
    Kotnik, T., P. Kramar, G. Pucihar, D. Miklavčič, and M. Tarek. Cell membrane electroporation—part 1: the phenomenon. IEEE Electr. Insul. Mag. 28:14–23, 2012.CrossRefGoogle Scholar
  28. 28.
    Krieg, A. M., A. K. Yi, S. Matson, T. J. Waldschmidt, G. A. Bishop, R. Teasdale, G. A. Koretzky, and D. M. Klinman. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995.  https://doi.org/10.1038/374546a0.Google Scholar
  29. 29.
    Krishnaveni, S., R. Subhashini, and V. Rajini. Inactivation of bacteria suspended in water by using high frequency unipolar pulse voltage. J. Food Process Eng. 40:e12574, 2017.CrossRefGoogle Scholar
  30. 30.
    Maor, E., A. Ivorra, and B. Rubinsky. Non thermal irreversible electroporation: novel technology for vascular smooth muscle cells ablation. PLoS ONE 2009.  https://doi.org/10.1371/journal.pone.0004757.Google Scholar
  31. 31.
    Marty, M., G. Sersa, J. R. Garbay, J. Gehl, C. G. Collins, M. Snoj, V. Billard, P. F. Geertsen, J. O. Larkin, D. Miklavcic, I. Pavlovic, S. M. Paulin-Kosir, M. Cemazar, N. Morsli, D. M. Soden, Z. Rudolf, C. Robert, G. C. O’Sullivan, and L. M. Mir. Electrochemotherapy—an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) Study. Eur. J. Cancer Suppl. 4:3–13, 2006.CrossRefGoogle Scholar
  32. 32.
    Neher, M. D., S. Weckbach, M. A. Flierl, M. S. Huber-Lang, and P. F. Stahel. Molecular mechanisms of inflammation and tissue injury after major trauma-is complement the “bad guy”? J. Biomed. Sci. 18:90, 2011.  https://doi.org/10.1186/1423-0127-18-90.CrossRefGoogle Scholar
  33. 33.
    Neumann, E., and S. Kakorin. Membrane electroporation: chemical thermodynamics and flux kinetics revisited and refined. Eur. Biophys. J. 2018.  https://doi.org/10.1007/s00249-018-1305-3.Google Scholar
  34. 34.
    Nolff, M. C., S. Reese, M. Fehr, R. Dening, and A. Meyer-Lindenberg. Assessment of wound bio-burden and prevalence of multi-drug resistant bacteria during open wound management. J. Small Anim. Pract. 57:255–259, 2016.CrossRefGoogle Scholar
  35. 35.
    Nomura, M., Y. Nakata, T. Inoue, A. Uzawa, S. Itamura, K. Nerome, M. Akashi, and G. Suzuki. In vivo induction of cytotoxic T lymphocytes specific for a single epitope introduced into an unrelated molecule. J. Immunol. Methods 193:41–49, 1996.CrossRefGoogle Scholar
  36. 36.
    Novickij, V., A. Grainys, J. Novickij, S. Tolvaisiene, and S. Markovskaja. Compact electro-permeabilization system for controlled treatment of biological cells and cell medium conductivity change measurement. Meas. Sci. Rev. 2014.  https://doi.org/10.2478/msr-2014-0038.Google Scholar
  37. 37.
    Nuccitelli, R., U. Pliquett, X. Chen, W. Ford, R. James Swanson, S. J. Beebe, J. F. Kolb, and K. H. Schoenbach. Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem. Biophys. Res. Commun. 2006.  https://doi.org/10.1016/j.bbrc.2006.02.181.Google Scholar
  38. 38.
    Okino, M., and H. Mohri. Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. Jpn. J. Cancer Res 72:1319–1321, 1987.Google Scholar
  39. 39.
    Pakhomova, O. N., B. W. Gregory, V. A. Khorokhorina, A. M. Bowman, S. Xiao, and A. G. Pakhomov. Electroporation-induced electrosensitization. PLoS ONE 2011.  https://doi.org/10.1371/journal.pone.0017100.Google Scholar
  40. 40.
    Perez-Roa, R. E., D. T. Tompkins, M. Paulose, C. A. Grimes, M. A. Anderson, and D. R. Noguera. Effects of localised, low-voltage pulsed electric fields on the development and inhibition of Pseudomonas aeruginosa biofilms. Biofouling 2006.  https://doi.org/10.1080/08927010601053541.Google Scholar
  41. 41.
    Pirac, E., M. Reberšek, and D. Miklavčič. Dosimetry in electroporation-based technologies and treatments. In: Dosimetry in Bioelectromagnetic, edited by M. S. Markov. Boca Raton: CRC Press, 2017, pp. 233–268.CrossRefGoogle Scholar
  42. 42.
    Puc, M., S. Čorović, K. Flisar, M. Petkovšek, J. Nastran, and D. Miklavčič. Techniques of signal generation required for electropermeabilization. Survey of electropermeabilization devices. Bioelectrochemistry 2004.  https://doi.org/10.1016/j.bioelechem.2004.04.001.Google Scholar
  43. 43.
    Pucihar, G., J. Krmelj, M. Reberšek, T. B. Napotnik, and D. Miklavčič. Equivalent pulse parameters for electroporation. IEEE Trans. Biomed. Eng. 58:3279–3288, 2011.CrossRefGoogle Scholar
  44. 44.
    Pucihar, G., L. M. Mir, and D. Miklavčič. The effect of pulse repetition frequency on the uptake into electropermeabilized cells in vitro with possible applications in electrochemotherapy. Bioelectrochemistry 2002.  https://doi.org/10.1016/s1567-5394(02)00116-0.Google Scholar
  45. 45.
    Raso, J., I. Alvarez, S. Condón, and F. J. Sala. Predicting inactivation of Salmonella senftenberg by pulsed electric fields. Innov. Food Sci. Emerg. Technol. 2000.  https://doi.org/10.1016/s1466-8564(99)00005-3.Google Scholar
  46. 46.
    Raso, J., W. Frey, G. Ferrari, G. Pataro, D. Knorr, J. Teissie, and D. Miklavčič. Recommendations guidelines on the key information to be reported in studies of application of PEF technology in food and biotechnological processes. Innov. Food Sci. Emerg. Technol. 2016.  https://doi.org/10.1016/j.ifset.2016.08.003.Google Scholar
  47. 47.
    Reberšek, M., and D. Miklavčič. Concepts of electroporation pulse generation and overview of electric pulse generators for cell and tissue electroporation. Boca Raton: Taylor & Francis, pp. 343–360, 2010.  https://doi.org/10.1201/ebk1439819067-21.
  48. 48.
    Reberšek, M., D. Miklavčič, C. Bertacchini, and M. Sack. Cell membrane electroporation—part 3: the equipment. IEEE Electr. Insul. Mag. 30:8–18, 2014.CrossRefGoogle Scholar
  49. 49.
    Robins, E. V. Immunosuppression of the burned patient. Crit. Care Nurs. Clin. N. Am. 1:767–774, 1989.CrossRefGoogle Scholar
  50. 50.
    Rubinsky, L., B. Patrick, P. Mikus, and B. Rubinsky. Germicide wound pad with active, in situ, electrolytically produced hypochlorous acid. Biomed. Microdevices 18:1–10, 2016.CrossRefGoogle Scholar
  51. 51.
    Sack, M., M. Hochberg, and G. Mueller. Synchronized switching and active clamping of IGBT switches in a simple marx generator. In PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 2016.Google Scholar
  52. 52.
    Sack, M., J. Ruf, M. Hochberg, D. Herzog, and G. Mueller. A device for combined thermal and pulsed electric field treatment of food. In 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), Brasov, Romania, 2017.  https://doi.org/10.1109/optim.2017.7974943.
  53. 53.
    Sano, M. B., C. B. Arena, K. R. Bittleman, M. R. Dewitt, H. J. Cho, C. S. Szot, D. Saur, J. M. Cissell, J. Robertson, Y. W. Lee, and R. V. Davalos. Bursts of bipolar microsecond pulses inhibit tumor growth. Sci. Rep. 2015.  https://doi.org/10.1038/srep14999.Google Scholar
  54. 54.
    Sano, M. B., C. C. Fesmire, M. R. Dewitt, and L. Xing. Burst and continuous high frequency irreversible electroporation protocols evaluated in a 3D tumor model. Phys. Med. Biol. 2018.  https://doi.org/10.1088/1361-6560/aacb62.Google Scholar
  55. 55.
    Spugnini, E. P., G. Arancia, A. Porrello, M. Colone, G. Formisano, A. Stringaro, G. Citro, and A. Molinari. Ultrastructural modifications of cell membranes induced by “electroporation” on melanoma xenografts. Microsc. Res. Tech. 70:1041–1050, 2007.CrossRefGoogle Scholar
  56. 56.
    Stankevič, V., V. Novickij, S. Balevičius, N. Žurauskiene, A. Baškys, A. Dervinis, and V. Bleizgys. Electroporation system generating wide range square-wave pulses for biological applications. In 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS), Rotterdam, The Netherlands, 2013.  https://doi.org/10.1109/biocas.2013.6679633.
  57. 57.
    Thomson, K. R., W. Cheung, S. J. Ellis, D. Federman, H. Kavnoudias, D. Loader-Oliver, S. Roberts, P. Evans, C. Ball, and A. Haydon. Investigation of the safety of irreversible electroporation in humans. J. Vasc. Interv. Radiol. 22:611–621, 2011.CrossRefGoogle Scholar
  58. 58.
    Toepfl, S., V. Heinz, and D. Knorr. High intensity pulsed electric fields applied for food preservation. Chem. Eng. Process. Process Intensif. 2007.  https://doi.org/10.1016/j.cep.2006.07.011.Google Scholar
  59. 59.
    Turner, K. H., J. Everett, U. Trivedi, K. P. Rumbaugh, and M. Whiteley. Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection. PLoS Genet. 2014.  https://doi.org/10.1371/journal.pgen.1004518.Google Scholar
  60. 60.
    Van Mellaert, L., M. Shahrooei, D. Hofmans, and J. Van Eldere. Immunoprophylaxis and immunotherapy of Staphylococcus epidermidis infections: challenges and prospects. Expert Rev. Vaccines 11(3):319–334, 2012.CrossRefGoogle Scholar
  61. 61.
    Vernhes, M. C., P. A. Cabanes, and J. Teissie. Chinese hamster ovary cells sensitivity to localized electrical stresses. Bioelectrochem. Bioenerg. 1999.  https://doi.org/10.1016/s0302-4598(98)00239-6.Google Scholar
  62. 62.
    Vernier, P. T., Y. Sun, M. J. Ziegler, and M. A. Gundersen. Nanoelectropulse-driven membrane perturbation and permeabilization. BMC Cell Biol. 2006.  https://doi.org/10.1109/bmn.2006.330927.Google Scholar
  63. 63.
    Weaver, J. C., and Y. A. Chizmadzhev. Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41:135–160, 1996.CrossRefGoogle Scholar
  64. 64.
    Wimmer, T., G. Srimathveeravalli, M. Silk, S. Monette, N. Gutta, M. Maybody, J. P. Erinjery, J. A. Coleman, S. B. Solomon, and C. T. Sofocleous. Feasibility of a modified biopsy needle for irreversible electroporation ablation and periprocedural tissue sampling. Technol. Cancer Res. Treat. 2016.  https://doi.org/10.1177/1533034615608739.Google Scholar
  65. 65.
    Wouters, P. C., N. Dutreux, J. P. Smelt, and H. L. Lelieveld. Effects of pulsed electric fields on inactivation kinetics of Listeria innocua. Appl. Environ. Microbiol. 65:5364–5371, 1999.Google Scholar
  66. 66.
    Yao, F., and E. Eriksson. Gene therapy in wound repair and regeneration. Wound Repair Regen. 8:443–451, 2000.CrossRefGoogle Scholar
  67. 67.
    Yarmush, M. L., A. Golberg, G. Serša, T. Kotnik, and D. Miklavčič. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu. Rev. Biomed. Eng. 16:295–320, 2014.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Porter School of Environmental and Earth SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Center for Engineering in MedicineMassachusetts General Hospital Shriners Burn Hospital for Children and Harvard Medical SchoolBostonUSA
  3. 3.Department of Biomedical EngineeringRutgers UniversityPiscatawayUSA

Personalised recommendations