Advertisement

Repeated In Vitro Impact Conditioning of Astrocytes Decreases the Expression and Accumulation of Extracellular Matrix

  • Addison Walker
  • Johntaehwan Kim
  • Joseph Wyatt
  • Abby Terlouw
  • Kartik Balachandran
  • Jeffrey WolchokEmail author
Article
  • 58 Downloads

Abstract

Pathological changes to the physical and chemical properties of brain extracellular matrix (ECM) occur following injury. It is generally assumed that astrocytes play an important role in these changes. What remain unclear are the triggers that lead to changes in the regulation of ECM by astrocytes following injury. We hypothesize that mechanical stimulation triggers genotypic and phenotypic changes to astrocytes that could ultimately reshape the ECM composition of the central nervous system following injury. To explore astrocyte mechanobiology, an in vitro drop test bioreactor was employed to condition primary rat astrocytes using short duration (10 ms), high deceleration (150G) and strain (20%) impact stimuli. Experiments were designed to explore the effect of single and repeated impact (single vs. double) on mechano-sensitive behavior including cell viability; ECM gene (collagens I and IV, fibronectin, neurocan, versican) and reactivity gene [glial fibrillary acidic protein (GFAP), S100B, vimentin] expression; matrix regulatory cytokine secretion [matrix metalloproteinase 2 (MMP-2), tissue inhibitor of metalloproteinases 1 (TIMP1), transforming growth factor beta 1 (TGFβ1)]; and matrix accumulation [collagen and glycosaminoglycan (GAG)]. Experiments revealed that both ECM and reactive gliosis gene expression was significantly decreased in response to impact conditioning. The decreases for several genes, including collagen, versican, and GFAP were sensitive to impact number, suggesting mechano-sensitivity to repeated impact conditioning. The measured decreases in ECM gene expression were supported by longer-term in vitro experiments that demonstrated significant decreases in chondroitin sulfate proteoglycan (CSPG) and collagen accumulation within impact conditioned 3-D scaffolds accompanied by a 25% decrease in elastic modulus. Overall, the general trend across all samples was towards altered ECM and reactive gliosis gene expression in response to impact. These results suggest that the regulation of ECM production by astrocytes is sensitive to mechanical stimuli, and that repeated impact conditioning may increase this sensitivity.

Keywords

Mechanobiology Nervous system Glial cells Central nervous system 

Notes

Acknowledgments

This work was supported by the National Science Foundation (Grant #CMMI-1404716) as well as the Arkansas Biosciences Institute.

Conflict of interest

The authors wish to confirm that there are no known conflicts of interest associated with this publication.

References

  1. 1.
    Babikian, T., and R. Asarnow. Neurocognitive outcomes and recovery after pediatric TBI: meta-analytic review of the literature. Neuropsychology 23:283–296, 2009.CrossRefGoogle Scholar
  2. 2.
    Balestrini, J. L., J. K. Skorinko, A. Hera, G. R. Gaudette, and K. L. Billiar. Applying controlled non-uniform deformation for in vitro studies of cell mechanobiology. Biomech. Model. Mechanobiol. 9:329–344, 2010.CrossRefGoogle Scholar
  3. 3.
    Bashir, S., M. Vernet, W. K. Yoo, I. Mizrahi, H. Theoret, and A. Pascual-Leone. Changes in cortical plasticity after mild traumatic brain injury. Restor. Neurol. Neurosci. 30:277–282, 2012.Google Scholar
  4. 4.
    Bayly, P. V., E. E. Black, R. C. Pedersen, E. P. Leister, and G. M. Genin. In vivo imaging of rapid deformation and strain in an animal model of traumatic brain injury. J. Biomech. 39:1086–1095, 2006.CrossRefGoogle Scholar
  5. 5.
    Bayly, P. V., S. Ji, S. K. Song, R. J. Okamoto, P. Massouros, and G. M. Genin. Measurement of strain in physical models of brain injury: a method based on HARP analysis of tagged magnetic resonance images (MRI). J. Biomech. Eng. 126:523–528, 2004.CrossRefGoogle Scholar
  6. 6.
    Bonneh-Barkay, D., and C. A. Wiley. Brain extracellular matrix in neurodegeneration. Brain Pathol. 19:573–585, 2009.CrossRefGoogle Scholar
  7. 7.
    Budday, S., R. Nay, R. de Rooij, P. Steinmann, T. Wyrobek, T. C. Ovaert, and E. Kuhl. Mechanical properties of gray and white matter brain tissue by indentation. J. Mech. Behav. Biomed. Mater. 46:318–330, 2015.CrossRefGoogle Scholar
  8. 8.
    Bush, T. G., N. Puvanachandra, C. H. Horner, A. Polito, T. Ostenfeld, C. N. Svendsen, L. Mucke, M. H. Johnson, and M. V. Sofroniew. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23:297–308, 1999.CrossRefGoogle Scholar
  9. 9.
    Cahoy, J. D., B. Emery, A. Kaushal, L. C. Foo, J. L. Zamanian, K. S. Christopherson, Y. Xing, J. L. Lubischer, P. A. Krieg, S. A. Krupenko, W. J. Thompson, and B. A. Barres. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28:264–278, 2008.CrossRefGoogle Scholar
  10. 10.
    Cater, H. L., D. Gitterman, S. M. Davis, C. D. Benham, B. Morrison, III, and L. E. Sundstrom. Stretch-induced injury in organotypic hippocampal slice cultures reproduces in vivo post-traumatic neurodegeneration: role of glutamate receptors and voltage-dependent calcium channels. J. Neurochem. 101:434–447, 2007.CrossRefGoogle Scholar
  11. 11.
    Chen, Y., H. Mao, K. H. Yang, T. Abel, and D. F. Meaney. A modified controlled cortical impact technique to model mild traumatic brain injury mechanics in mice. Front. Neurol. 5:100, 2014.Google Scholar
  12. 12.
    Cobb, B. R., J. E. Urban, E. M. Davenport, S. Rowson, S. M. Duma, J. A. Maldjian, C. T. Whitlow, A. K. Powers, and J. D. Stitzel. Head impact exposure in youth football: elementary school ages 9–12 years and the effect of practice structure. Ann. Biomed. Eng. 41:2463–2473, 2013.CrossRefGoogle Scholar
  13. 13.
    Coronado, V. G., L. Xu, S. V. Basavaraju, L. C. McGuire, M. M. Wald, M. D. Faul, B. R. Guzman, and J. D. Hemphill. Surveillance for traumatic brain injury-related deaths—United States, 1997–2007. MMWR Surveill. Summ. 60:1–32, 2011.Google Scholar
  14. 14.
    Corps, K. N., T. L. Roth, and D. B. McGavern. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 72:355–362, 2015.CrossRefGoogle Scholar
  15. 15.
    Crisco, J. J., R. Fiore, J. G. Beckwith, J. J. Chu, P. G. Brolinson, S. Duma, T. W. McAllister, A. C. Duhaime, and R. M. Greenwald. Frequency and location of head impact exposures in individual collegiate football players. J. Athl. Train. 45:549–559, 2010.CrossRefGoogle Scholar
  16. 16.
    Crisco, J. J., B. J. Wilcox, J. G. Beckwith, J. J. Chu, A. C. Duhaime, S. Rowson, S. M. Duma, A. C. Maerlender, T. W. McAllister, and R. M. Greenwald. Head impact exposure in collegiate football players. J. Biomech. 44:2673–2678, 2011.CrossRefGoogle Scholar
  17. 17.
    Cullen, D. K., V. N. Vernekar, and M. C. LaPlaca. Trauma-induced plasmalemma disruptions in three-dimensional neural cultures are dependent on strain modality and rate. J. Neurotrauma 28:2219–2233, 2011.CrossRefGoogle Scholar
  18. 18.
    Di Giovanni, S., V. Movsesyan, F. Ahmed, L. Cernak, S. Schinelli, B. Stoica, and A. I. Faden. Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc. Natl Acad. Sci. USA 102:8333–8338, 2005.CrossRefGoogle Scholar
  19. 19.
    Eckner, J. T., M. Sabin, J. S. Kutcher, and S. P. Broglio. No evidence for a cumulative impact effect on concussion injury threshold. J. Neurotrauma 28:2079–2090, 2011.CrossRefGoogle Scholar
  20. 20.
    Ellis, E. F., K. A. Willoughby, S. A. Sparks, and T. Chen. S100B protein is released from rat neonatal neurons, astrocytes, and microglia by in vitro trauma and anti-S100 increases trauma-induced delayed neuronal injury and negates the protective effect of exogenous S100B on neurons. J. Neurochem. 101:1463–1470, 2007.CrossRefGoogle Scholar
  21. 21.
    Fidan, E., J. Lewis, A. E. Kline, R. H. Garman, H. Alexander, J. P. Cheng, C. O. Bondi, R. S. Clark, C. Dezfulian, P. M. Kochanek, V. E. Kagan, and H. Bayir. Repetitive mild traumatic brain injury in the developing brain: effects on long-term functional outcome and neuropathology. J. Neurotrauma 33:641–651, 2016.CrossRefGoogle Scholar
  22. 22.
    Fraichard, A., O. Chassande, G. Bilbaut, C. Dehay, P. Savatier, and J. Samarut. In-vitro differentiation of embryonic stem cells into glial cells and functional neurons. J. Cell Sci. 108:3181–3188, 1995.Google Scholar
  23. 23.
    Gould, R. A., K. Chin, T. P. Santisakultarm, A. Dropkin, J. M. Richards, C. B. Schaffer, and J. T. Butcher. Cyclic strain anisotropy regulates valvular interstitial cell phenotype and tissue remodeling in three-dimensional culture. Acta Biomater. 8:1710–1719, 2012.CrossRefGoogle Scholar
  24. 24.
    Guskiewicz, K. M., M. McCrea, S. W. Marshall, R. C. Cantu, C. Randolph, W. Barr, J. A. Onate, and J. P. Kelly. Cumulative effects associated with recurrent concussion in collegiate football players—the NCAA Concussion Study. JAMA 290:2549–2555, 2003.CrossRefGoogle Scholar
  25. 25.
    Gyoneva, S., and R. M. Ransohoff. Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell–cell communication by chemokines. Trends Pharmacol. Sci. 36:471–480, 2015.CrossRefGoogle Scholar
  26. 26.
    Harris, N. G., S. T. Carmichael, D. A. Hovda, and R. L. Sutton. Traumatic brain injury results in disparate regions of chondroitin sulfate proteoglycan expression that are temporally limited. J. Neurosci. Res. 87:2937–2950, 2009.CrossRefGoogle Scholar
  27. 27.
    Heller, Z., J. Wyatt, A. Arnaud, and J. C. Wolchok. An in vitro impact model for the study of central nervous system cell mechanobiology. Cell. Mol. Bioeng. 7:521–531, 2014.CrossRefGoogle Scholar
  28. 28.
    Hurd, S. A., N. M. Bhatti, A. M. Walker, B. M. Kasukonis, and J. C. Wolchok. Development of a biological scaffold engineered using the extracellular matrix secreted by skeletal muscle cells. Biomaterials 49:9–17, 2015.CrossRefGoogle Scholar
  29. 29.
    Israelsson, C., Y. Wang, A. Kylberg, C. G. Pick, B. J. Hoffer, and T. Ebendal. Closed head injury in a mouse model results in molecular changes indicating inflammatory responses. J. Neurotrauma 26:1307–1314, 2009.CrossRefGoogle Scholar
  30. 30.
    Jin, X., F. Zhu, H. Mao, M. Shen, and K. H. Yang. A comprehensive experimental study on material properties of human brain tissue. J. Biomech. 46:2795–2801, 2013.CrossRefGoogle Scholar
  31. 31.
    Kettenmann, H., and A. Verkhratsky. Neuroglia—living nerve glue. Fortschr. Neurol. Psychiatr. 79:588–597, 2011.CrossRefGoogle Scholar
  32. 32.
    King, A. I. Fundamentals of impact biomechanics: Part I—biomechanics of the head, neck, and thorax. Annu. Rev. Biomed. Eng. 2:55–81, 2000.CrossRefGoogle Scholar
  33. 33.
    Kou, Z., and A. Iraji. Imaging brain plasticity after trauma. Neural Regen. Res. 9:693–700, 2014.CrossRefGoogle Scholar
  34. 34.
    Laksari, K., K. Sadeghipour, and K. Darvish. Mechanical response of brain tissue under blast loading. J. Mech. Behav. Biomed. Mater. 32:132–144, 2014.CrossRefGoogle Scholar
  35. 35.
    Lasher, R. A., J. C. Wolchok, M. K. Parikh, J. P. Kennedy, and R. W. Hitchcock. Design and characterization of a modified T-flask bioreactor for continuous monitoring of engineered tissue stiffness. Biotechnol. Prog. 26:857–864, 2010.CrossRefGoogle Scholar
  36. 36.
    Li, N., Y. Yang, D. P. Glover, J. Zhang, M. Saraswati, C. Robertson, and G. Pelled. Evidence for impaired plasticity after traumatic brain injury in the developing brain. J. Neurotrauma 31:395–403, 2014.CrossRefGoogle Scholar
  37. 37.
    Mallard, C., J. O. Davidson, S. Tan, C. R. Green, L. Bennet, N. J. Robertson, and A. J. Gunn. Astrocytes and microglia in acute cerebral injury underlying cerebral palsy associated with preterm birth. Pediatr. Res. 75:234–240, 2014.CrossRefGoogle Scholar
  38. 38.
    McCarthy, K. D., and J. Devellis. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85:890–902, 1980.CrossRefGoogle Scholar
  39. 39.
    McGraw, J., G. W. Hiebert, and J. D. Steeves. Modulating astrogliosis after neurotrauma. J. Neurosci. Res. 63:109–115, 2001.CrossRefGoogle Scholar
  40. 40.
    McKeon, R. J., A. Hoke, and J. Silver. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp. Neurol. 136:32–43, 1995.CrossRefGoogle Scholar
  41. 41.
    McKeon, R. J., M. J. Jurynec, and C. R. Buck. The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J. Neurosci. 19:10778–10788, 1999.CrossRefGoogle Scholar
  42. 42.
    Morrison, III, B., H. L. Cater, C. C. Wang, F. C. Thomas, C. T. Hung, G. A. Ateshian, and L. E. Sundstrom. A tissue level tolerance criterion for living brain developed with an in vitro model of traumatic mechanical loading. Stapp Car Crash J. 47:93–105, 2003.Google Scholar
  43. 43.
    Ralay Ranaivo, H., S. M. Zunich, N. Choi, J. N. Hodge, and M. S. Wainwright. Mild stretch-induced injury increases susceptibility to interleukin-1beta-induced release of matrix metalloproteinase-9 from astrocytes. J. Neurotrauma 28:1757–1766, 2011.CrossRefGoogle Scholar
  44. 44.
    Rolls, A., R. Shechter, and M. Schwartz. The bright side of the glial scar in CNS repair. Nat. Rev. Neurosci. 10:235–241, 2009.CrossRefGoogle Scholar
  45. 45.
    Ross, D. E., A. L. Ochs, J. M. Seabaugh, M. F. Demark, C. R. Shrader, J. H. Marwitz, and M. D. Havranek. Progressive brain atrophy in patients with chronic neuropsychiatric symptoms after mild traumatic brain injury: a preliminary study. Brain Inj. 26:1500–1509, 2012.CrossRefGoogle Scholar
  46. 46.
    Rowson, S., G. Brolinson, M. Goforth, D. Dietter, and S. Duma. Linear and angular head acceleration measurements in collegiate football. J. Biomech. Eng. 131:061016, 2009.CrossRefGoogle Scholar
  47. 47.
    Sarntinoranont, M., S. J. Lee, Y. Hong, M. A. King, G. Subhash, J. Kwon, and D. F. Moore. High-strain-rate brain injury model using submerged acute rat brain tissue slices. J. Neurotrauma 29:418–429, 2012.CrossRefGoogle Scholar
  48. 48.
    Shultz, S. R., F. Bao, V. Omana, C. Chiu, A. Brown, and D. P. Cain. Repeated mild lateral fluid percussion brain injury in the rat causes cumulative long-term behavioral impairments, neuroinflammation, and cortical loss in an animal model of repeated concussion. J. Neurotrauma 29:281–294, 2012.CrossRefGoogle Scholar
  49. 49.
    Slemmer, J. E., E. J. T. Matser, C. I. De Zeeuw, and J. T. Weber. Repeated mild injury causes cumulative damage to hippocampal cells. Brain 125:2699–2709, 2002.CrossRefGoogle Scholar
  50. 50.
    Sofroniew, M. V., and H. V. Vinters. Astrocytes: biology and pathology. Acta Neuropathol. 119:7–35, 2010.CrossRefGoogle Scholar
  51. 51.
    Soza, G., R. Grosso, C. Nimsky, P. Hastreiter, R. Fahlbusch, and G. Greiner. Determination of the elasticity parameters of brain tissue with combined simulation and registration. Int. J. Med. Robot. 1:87–95, 2005.CrossRefGoogle Scholar
  52. 52.
    Staffa, K., B. Ondruschka, H. Franke, and J. Dressler. Cerebellar gene expression following human traumatic brain injury. J. Neurotrauma 29:2716–2721, 2012.CrossRefGoogle Scholar
  53. 53.
    Sullivan, K. E., K. P. Quinn, K. M. Tang, I. Georgakoudi, and L. D. Black. Extracellular matrix remodeling following myocardial infarction influences the therapeutic potential of mesenchymal stem cells. Stem Cell Res. Ther. 5:15, 2014.CrossRefGoogle Scholar
  54. 54.
    Takeuchi, S., H. Nawashiro, S. Sato, S. Kawauchi, K. Nagatani, H. Kobayashi, N. Otani, H. Osada, K. Wada, and K. Shima. A better mild traumatic brain injury model in the rat. Acta Neurochir. Suppl. 118:99–101, 2013.Google Scholar
  55. 55.
    Toy, D., and U. Namgung. Role of glial cells in axonal regeneration. Exp. Neurobiol. 22:68–76, 2013.CrossRefGoogle Scholar
  56. 56.
    Urban, J. E., E. M. Davenport, A. J. Golman, J. A. Maldjian, C. T. Whitlow, A. K. Powers, and J. D. Stitzel. Head impact exposure in youth football: high school ages 14 to 18 years and cumulative impact analysis. Ann. Biomed. Eng. 41:2474–2487, 2013.CrossRefGoogle Scholar
  57. 57.
    Veliz, P., J. T. Eckner, J. Zdroik, and J. E. Schulenberg. Lifetime prevalence of self-reported concussion among adolescents involved in competitive sports: a National U.S. Study. J. Adolesc. Health 2018.  https://doi.org/10.1016/j.jadohealth.2018.08.023.Google Scholar
  58. 58.
    Weickenmeier, J., R. de Rooij, S. Budday, P. Steinmann, T. C. Ovaert, and E. Kuhl. Brain stiffness increases with myelin content. Acta Biomater. 42:265–272, 2016.CrossRefGoogle Scholar
  59. 59.
    Wiese, S., M. Karus, and A. Faissner. Astrocytes as a source for extracellular matrix molecules and cytokines. Front. Pharmacol. 3:120, 2012.CrossRefGoogle Scholar
  60. 60.
    Wilhelmsson, U., L. Z. Li, M. Pekna, C. H. Berthold, S. Blom, C. Eliasson, O. Renner, E. Bushong, M. Ellisman, T. E. Morgan, and M. Pekny. Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J. Neurosci. 24:5016–5021, 2004.CrossRefGoogle Scholar
  61. 61.
    Winter, C. C., K. S. Katiyar, N. S. Hernandez, Y. J. Song, L. A. Struzyna, J. P. Harris, and D. K. Cullen. Transplantable living scaffolds comprised of micro-tissue engineered aligned astrocyte networks to facilitate central nervous system regeneration. Acta Biomater. 38:44–58, 2016.CrossRefGoogle Scholar
  62. 62.
    Wolchok, J. C., C. Brokopp, C. J. Underwood, and P. A. Tresco. The effect of bioreactor induced vibrational stimulation on extracellular matrix production from human derived fibroblasts. Biomaterials 30:327–335, 2009.CrossRefGoogle Scholar
  63. 63.
    Wolchok, J. C., and P. A. Tresco. Using growth factor conditioning to modify the properties of human cell derived extracellular matrix. Biotechnol. Prog. 2012.  https://doi.org/10.1002/btpr.1625.Google Scholar
  64. 64.
    Wolchok, J. C., and P. A. Tresco. Using vocally inspired mechanical conditioning to enhance the synthesis of a cell-derived biomaterial. Ann. Biomed. Eng. 41:2358–2366, 2013.CrossRefGoogle Scholar
  65. 65.
    Yates, N. J., S. Lydiard, B. Fehily, G. Weir, A. Chin, C. A. Bartlett, J. Alderson, and M. Fitzgerald. Repeated mild traumatic brain injury in female rats increases lipid peroxidation in neurons. Exp. Brain Res. 235:2133–2149, 2017.CrossRefGoogle Scholar
  66. 66.
    Zhao, X. R., A. Ahram, R. F. Berman, J. P. Muizelaar, and B. G. Lyeth. Early loss of astrocytes after experimental traumatic brain injury. Glia 44:140–152, 2003.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity of ArkansasFayettevilleUSA

Personalised recommendations