Predictive Numerical Simulations of Double Branch Stent-Graft Deployment in an Aortic Arch Aneurysm

  • L. DeryckeEmail author
  • D. Perrin
  • F. Cochennec
  • J.-N. Albertini
  • S. Avril


Total endovascular repair of the aortic arch represents a promising option for patients ineligible to open surgery. Custom-made design of stent-grafts (SG), such as the Terumo Aortic® RelayBranch device (DB), requires complex preoperative measures. Accurate SG deployment is required to avoid intraoperative or postoperative complications, which is extremely challenging in the aortic arch. In that context, our aim is to develop a computational tool able to predict SG deployment in such highly complex situations. A patient-specific case is performed with complete deployment of the DB and its bridging stents in an aneurysmal aortic arch. Deviations of our simulation predictions from actual stent positions are estimated based on post-operative scan and a sensitivity analysis is performed to assess the effects of material parameters. Results show a very good agreement between simulations and post-operative scan, with especially a torsion effect, which is successfully reproduced by our simulation. Relative diameter, transverse and longitudinal deviations are of 3.2 ± 4.0%, 2.6 ± 2.9 mm and 5.2 ± 3.5 mm respectively. Our numerical simulations show their ability to successfully predict the DB deployment in complex anatomy. The results emphasize the potential of computational simulations to assist practitioners in planning and performing complex and secure interventions.


Endovascular surgery Aortic endograft Thoracic endovascular aneurysm repair Finite-element analysis Patient-specific model Computational biomechanics 



Bridging stents


Computed tomography


Terumo Aortic® (formerly Bolton Medical®) RelayBranch device


Finite-element analysis




Thoracic Endovascular Aneurysm Repair


Vascular Modeling Toolkit



The authors would like to thank Samuel Arbefeuille, Scott Rush and Christian Fletcher from Terumo Aortic® (formerly Bolton Medical®) for their help and support in this study. Funding was provided by Agence Régionale de Santé d’Ile de France (FR).

Conflict of interest

D. Perrin, J.-N. Albertini and S. Avril are cofounders of the company Predisurge SAS. The other authors have no conflict of interest.


  1. 1.
    Ambler, G., et al. Early results of fenestrated endovascular repair of juxtarenal aortic aneurysms in the United Kingdom. Circulation 125(22):2707–2715, 2012.CrossRefGoogle Scholar
  2. 2.
    Auricchio, F., A. Constantinescu, M. Conti, and G. Scalet. Fatigue of metallic stents: from clinical evidence to computational analysis. Ann. Biomed. Eng. 44:287–301, 2016.CrossRefGoogle Scholar
  3. 3.
    Auricchio, F., M. Conti, S. Marconi, A. Reali, J. L. Tolenaar, and S. Trimarchi. Patient-specific aortic endografting simulation: from diagnosis to prediction. Comput. Biol. Med. 43:386–394, 2013.CrossRefGoogle Scholar
  4. 4.
    Chiu, T. L., A. Y. S. Tang, S. W. K. Cheng, and K. W. Chow. Analysis of flow patterns on branched endografts for aortic arch aneurysms. Inform. Med. Unlocked 13:62–70, 2018.CrossRefGoogle Scholar
  5. 5.
    Czerny, M., B. Rylski, J. Morlock, H. Schröfel, F. Beyersdorf, B. Saint Lebes, O. Meyrignac, F. Mokrane, M. Lescan, C. Schlensak, C. Hazenberg, T. Bloemert-Tuin, S. Braithwaite, J. van Herwaarden, and H. Rousseau. Orthotopic branched endovascular aortic arch repair in patients who cannot undergo classical surgery. Eur. J. Cardio-Thorac. Surg. 53(5):1007–1012, 2018.CrossRefGoogle Scholar
  6. 6.
    de Beaufort, H. W. L., F. J. H. Nauta, M. Conti, E. Cellitti, C. Trentin, E. Faggiano, G. H. W. van Bogerijen, C. A. Figueroa, F. L. Moll, J. A. van Herwaarden, F. Auricchio, and S. Trimarchi. Extensibility and distensibility of the thoracic aorta in patients with aneurysm. Eur. J. Vasc. Endovasc. Surg. 53:199–205, 2017.CrossRefGoogle Scholar
  7. 7.
    De Bock, S., F. Iannaccone, M. De Beule, D. Van Loo, F. Vermassen, B. Verhegghe, and P. Segers. Filling the void: a coalescent numerical and experimental technique to determine aortic stent graft mechanics. J. Biomech. 46:2477–2482, 2013.CrossRefGoogle Scholar
  8. 8.
    De Bock, S., F. Iannaccone, M. De Beule, F. Vermassen, P. Segers, and B. Verhegghe. What if you stretch the IFU? A mechanical insight into stent graft instructions for use in angulated proximal aneurysm necks. Med. Eng. Phys. 36:1567–1576, 2014.CrossRefGoogle Scholar
  9. 9.
    De Bock, S., F. Iannaccone, G. De Santis, M. De Beule, D. Van Loo, D. Devos, F. Vermassen, P. Segers, and B. Verhegghe. Virtual evaluation of stent graft deployment: a validated modeling and simulation study. J. Mech. Behav. Biomed. Mater. 13:129–139, 2012.CrossRefGoogle Scholar
  10. 10.
    Demanget, N., S. Avril, P. Badel, L. Orgéas, C. Geindreau, J.-N. Albertini, and J.-P. Favre. Computational comparison of the bending behavior of aortic stent-grafts. J. Mech. Behav. Biomed. Mater. 5:272–282, 2012.CrossRefGoogle Scholar
  11. 11.
    Doyle, M. G., S. A. Crawford, E. Osman, N. Eisenberg, L. W. Tse, C. H. Amon, and T. L. Forbes. Analysis of iliac artery geometric properties in fenestrated aortic stent graft rotation. Vasc. Endovasc. Surg. 52:188–194, 2018.CrossRefGoogle Scholar
  12. 12.
    Duprey, A., O. Trabelsi, M. Vola, J.-P. Favre, and S. Avril. Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomater. 42:273–285, 2016.CrossRefGoogle Scholar
  13. 13.
    Ferrer, C., C. Coscarella, and P. Cao. Endovascular repair of aortic arch disease with double inner branched thoracic stent graft: the Bolton perspective. J. Cardiovasc. Surg. (Torino) 59:547–553, 2018.Google Scholar
  14. 14.
    Figueroa, C. A., C. A. Taylor, A. J. Chiou, V. Yeh, and C. K. Zarins. Magnitude and direction of pulsatile displacement forces acting on thoracic aortic endografts. J. Endovasc. Ther. 16:350–358, 2009.CrossRefGoogle Scholar
  15. 15.
    Gindre, J., A. Bel-Brunon, A. Kaladji, A. Duménil, M. Rochette, A. Lucas, P. Haigron, and A. Combescure. Finite element simulation of the insertion of guidewires during an EVAR procedure: example of a complex patient case, a first step toward patient-specific parameterized models. Int. J. Numer. Methods Biomed. Eng. 31:e02716, 2015.CrossRefGoogle Scholar
  16. 16.
    Haulon, S., R. K. Greenberg, R. Spear, M. Eagleton, C. Abraham, C. Lioupis, E. Verhoeven, K. Ivancev, T. Kölbel, B. Stanley, T. Resch, P. Desgranges, B. Maurel, B. Roeder, T. Chuter, and T. Mastracci. Global experience with an inner branched arch endograft. J. Thorac. Cardiovasc. Surg. 148:1709–1716, 2014.CrossRefGoogle Scholar
  17. 17.
    Hemmler, A., B. Lutz, C. Reeps, G. Kalender, and M. W. Gee. A methodology for in silico endovascular repair of abdominal aortic aneurysms. Biomech. Model. Mechanobiol. 17:1139–1164, 2018.CrossRefGoogle Scholar
  18. 18.
    Ishimaru, S. Endografting of the aortic arch. J. Endovasc. Ther. 11:II66–II71, 2004.CrossRefGoogle Scholar
  19. 19.
    Kleinstreuer, C., Z. Li, C. A. Basciano, S. Seelecke, and M. A. Farber. Computational mechanics of Nitinol stent grafts. J. Biomech. 41:2370–2378, 2008.CrossRefGoogle Scholar
  20. 20.
    Malkawi, A. H., R. J. Hinchliffe, M. Yates, P. J. Holt, I. M. Loftus, and M. M. Thompson. Morphology of aortic arch pathology: implications for endovascular repair. J. Endovasc. Ther. 17:474–479, 2010.CrossRefGoogle Scholar
  21. 21.
    Marrocco-Trischitta, M. M., T. M. van Bakel, R. M. Romarowski, H. W. de Beaufort, M. Conti, J. A. van Herwaarden, F. L. Moll, F. Auricchio, and S. Trimarchi. The modified arch landing areas nomenclature (MALAN) improves prediction of stent graft displacement forces: proof of concept by computational fluid dynamics modelling. Eur. J. Vasc. Endovasc. Surg. 55:584–592, 2018.CrossRefGoogle Scholar
  22. 22.
    Marzelle, J., E. Presles, J. P. Becquemin, and WINDOWS trial participants. Results and factors affecting early outcome of fenestrated and/or branched stent grafts for aortic aneurysms: a multicenter prospective study. Ann. Surg. 261:197–206, 2015.CrossRefGoogle Scholar
  23. 23.
    Mastracci, T. M., M. J. Eagleton, Y. Kuramochi, S. Bathurst, and K. Wolski. Twelve-year results of fenestrated endografts for juxtarenal and group IV thoracoabdominal aneurysms. J. Vasc. Surg. 61:355–364, 2015.CrossRefGoogle Scholar
  24. 24.
    Maurel, B., T. M. Mastracci, R. Spear, A. Hertault, R. Azzaoui, J. Sobocinski, and S. Haulon. Branched and fenestrated options to treat aortic arch aneurysms. J. Cardiovasc. Surg. (Torino) 57:686–697, 2016.Google Scholar
  25. 25.
    Maurel, B., J. Sobocinski, R. Spear, R. Azzaoui, M. Koussa, A. Prat, M. R. Tyrrell, A. Hertault, and S. Haulon. Current and future perspectives in the repair of aneurysms involving the aortic arch. J. Cardiovasc. Surg. (Torino) 56:197–215, 2015.Google Scholar
  26. 26.
    Molony, D. S., E. G. Kavanagh, P. Madhavan, M. T. Walsh, and T. M. McGloughlin. A computational study of the magnitude and direction of migration forces in patient-specific abdominal aortic aneurysm stent-grafts. Eur. J. Vasc. Endovasc. Surg. 40:332–339, 2010.CrossRefGoogle Scholar
  27. 27.
    Natsis, K. I., I. A. Tsitouridis, M. V. Didagelos, A. A. Fillipidis, K. G. Vlasis, and P. D. Tsikaras. Anatomical variations in the branches of the human aortic arch in 633 angiographies: clinical significance and literature review. Surg. Radiol. Anat. SRA 31:319–323, 2009.CrossRefGoogle Scholar
  28. 28.
    Nauta, F. J., S. Trimarchi, A. V. Kamman, F. L. Moll, J. A. van Herwaarden, H. J. Patel, C. A. Figueroa, K. A. Eagle, and J. B. Froehlich. Update in the management of type B aortic dissection. Vasc. Med. Lond. Engl. 21:251–263, 2016.CrossRefGoogle Scholar
  29. 29.
    Nienaber, C. A., S. Kische, H. Rousseau, H. Eggebrecht, T. C. Rehders, G. Kundt, A. Glass, D. Scheinert, M. Czerny, T. Kleinfeldt, B. Zipfel, L. Labrousse, R. Fattori, H. Ince, and INSTEAD-XL trial. Endovascular repair of type B aortic dissection: long-term results of the randomized investigation of stent grafts in aortic dissection trial. Circ. Cardiovasc. Interv. 6:407–416, 2013.CrossRefGoogle Scholar
  30. 30.
    Perrin, D., P. Badel, L. Orgeas, C. Geindreau, S. R. du Roscoat, J.-N. Albertini, and S. Avril. Patient-specific simulation of endovascular repair surgery with tortuous aneurysms requiring flexible stent-grafts. J. Mech. Behav. Biomed. Mater. 63:86–99, 2016.CrossRefGoogle Scholar
  31. 31.
    Perrin, D., P. Badel, L. Orgéas, C. Geindreau, A. Dumenil, J.-N. Albertini, and S. Avril. Patient-specific numerical simulation of stent-graft deployment: validation on three clinical cases. J. Biomech. 48:1868–1875, 2015.CrossRefGoogle Scholar
  32. 32.
    Perrin, D., N. Demanget, P. Badel, S. Avril, L. Orgéas, C. Geindreau, and J.-N. Albertini. Deployment of stent grafts in curved aneurysmal arteries: toward a predictive numerical tool. Int. J. Numer. Methods Biomed. Eng. 31:e02698, 2015.CrossRefGoogle Scholar
  33. 33.
    Reymond, P., P. Crosetto, S. Deparis, A. Quarteroni, and N. Stergiopulos. Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Med. Eng. Phys. 35:784–791, 2013.CrossRefGoogle Scholar
  34. 34.
    Riambau, V. Application of the bolton relay device for thoracic endografting in or near the aortic arch. Aorta 3:16–24, 2015.CrossRefGoogle Scholar
  35. 35.
    Romarowski, R. M., M. Conti, S. Morganti, V. Grassi, M. M. Marrocco-Trischitta, S. Trimarchi, and F. Auricchio. Computational simulation of TEVAR in the ascending aorta for optimal endograft selection: a patient-specific case study. Comput. Biol. Med. 103:140–147, 2018.CrossRefGoogle Scholar
  36. 36.
    Romarowski, R. M., E. Faggiano, M. Conti, A. Reali, S. Morganti, and F. Auricchio. A novel computational framework to predict patient-specific hemodynamics after TEVAR: integration of structural and fluid-dynamics analysis by image elaboration. Comput. Fluids 2018. Scholar
  37. 37.
    Sanford, R. M., S. A. Crawford, H. Genis, M. G. Doyle, T. L. Forbes, and C. H. Amon. Predicting rotation in fenestrated endovascular aneurysm repair using finite element analysis. J. Biomech. Eng. 2018. Scholar
  38. 38.
    Spear, R., A. Hertault, K. Van Calster, N. Settembre, M. Delloye, R. Azzaoui, J. Sobocinski, D. Fabre, M. Tyrrell, and S. Haulon. Complex endovascular repair of postdissection arch and thoracoabdominal aneurysms. J. Vasc. Surg. 67(3):685–693, 2017.CrossRefGoogle Scholar
  39. 39.
    Tian, D. H., B. Wan, M. Di Eusanio, D. Black, and T. D. Yan. A systematic review and meta-analysis on the safety and efficacy of the frozen elephant trunk technique in aortic arch surgery. Ann. Cardiothorac. Surg. 2:581–591, 2013.Google Scholar
  40. 40.
    Ullery, B. W., G.-Y. Suh, K. Hirotsu, D. Zhu, J. T. Lee, M. D. Dake, D. Fleischmann, and C. P. Cheng. Geometric deformations of the thoracic aorta and supra-aortic arch branch vessels following thoracic endovascular aortic repair. Vasc. Endovasc. Surg. 52:173–180, 2018.CrossRefGoogle Scholar
  41. 41.
    Vad, S., A. Eskinazi, T. Corbett, T. McGloughlin, and J. P. Vande Geest. Determination of coefficient of friction for self-expanding stent-grafts. J. Biomech. Eng. 132:121007, 2010.CrossRefGoogle Scholar
  42. 42.
    van Bakel, T. M., C. J. Arthurs, J. A. van Herwaarden, F. L. Moll, K. A. Eagle, H. J. Patel, S. Trimarchi, and C. A. Figueroa. A computational analysis of different endograft designs for Zone 0 aortic arch repair. Eur. J. Cardio-Thorac. Surg. 54(2):389–396, 2018.CrossRefGoogle Scholar
  43. 43.
    van Bogerijen, G. H. W., J. L. Tolenaar, M. Conti, F. Auricchio, F. Secchi, F. Sardanelli, F. L. Moll, J. A. van Herwaarden, V. Rampoldi, and S. Trimarchi. Contemporary role of computational analysis in endovascular treatment for thoracic aortic disease. Aorta (Stamford, CN) 1:171–181, 2013.CrossRefGoogle Scholar
  44. 44.
    van Prehn, J., K. L. Vincken, B. E. Muhs, G. K. W. Barwegen, L. W. Bartels, M. Prokop, F. L. Moll, and H. J. M. Verhagen. Toward endografting of the ascending aorta: insight into dynamics using dynamic cine-CTA. J. Endovasc. Ther. 14:551–560, 2007.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERMSaint-ÉtienneFrance
  2. 2.Assistance Publique des Hôpitaux de Paris, Hôpital Mondor, Service de Chirurgie VasculaireCréteilFrance
  3. 3.PrediSurgeSaint-ÉtienneFrance
  4. 4.Service de Chirurgie Vasculaire, Centre Hospitalier Régional Universitaire de Saint-EtienneSaint-Priez-en-JarezFrance

Personalised recommendations