Advertisement

Fabrication of a Novel Absorbable Vascular Anastomosis Device and Testing in a Pig Liver Transplantation Model

  • Ui Jun Park
  • Woonhyeok Jeong
  • Sun Young Kwon
  • Yunkun Kim
  • Kimyung Choi
  • Hyoung Tae Kim
  • Daegu SonEmail author
Article
  • 27 Downloads

Abstract

An absorbable vascular anastomosis device (AVAD) was fabricated and tested in pig liver transplantation experiments. We prepared biodegradable copolymers with various ratios of l-lactide: glycolide and tested their properties including inherent viscosity, in vitro biodegradation, and tensile strength. The mechanical and physical properties of the finally selected copolymers were analyzed according to decomposition time. The AVAD, consisting of two inner rings and one coupler, was fabricated with 5-, 15-, and 20-mm diameter sizes using an injection molding machine. Based on changes in the overall mechanical and physical properties, it is believed that the AVAD will maintain its shape without deformation while connecting the blood vessels to external force for at least 3 weeks. Four mini-pigs underwent liver transplantation with AVAD using livers obtained from swine leukocyte antigen–identical siblings. Anastomoses was achieved in all four cases. In case 4, an autopsy conducted at 4 months revealed that the AVAD was absorbed and the anastomosis was intact, demonstrating the success of the AVAD in the pig liver transplantation experiments and the feasibility of using an AVAD in organ transplantation.

Keywords

Vascular surgery Blood vessel Biocompatibility 

Abbreviations and Acronyms

AVAD

Absorbable vascular anastomotic device

AFM

Atomic force microscopy

ASTM D638

Standard test method for tensile properties of plastics

DSC

Differential scanning calorimetry

NMR

Nuclear magnetic resonance

PLA

Poly(lactic acid)

PLGA

Poly(lactide-co-glycolide)

PGA

Poly(glycolic acid)

SLA

Swine leukocyte antigen

TGA

Thermal gravimetric analysis

Notes

Acknowledgments

This work was supported by the Beyond Leading Technology R&D Program of the Small and Medium Business Administration [S20146915, 2014].

References

  1. 1.
    Ardehali, B., A. N. Morritt, and A. Jain. Systematic review: anastomotic microvascular device. J. Plast. Reconstr. Aesthet. Surg. 67:752–755, 2014.CrossRefGoogle Scholar
  2. 2.
    Arzu, G. D., et al. Temporary porto-caval shunt utility during orthotopic liver transplantation. Transplant. Proc. 40:1937–1940, 2008.CrossRefGoogle Scholar
  3. 3.
    Boland, E. L., R. Shine, N. Kelly, C. A. Sweeney, and P. E. McHugh. A review of material degradation modelling for the analysis and design of bioabsorbable stents. Ann. Biomed. Eng. 44:341–356, 2016.CrossRefGoogle Scholar
  4. 4.
    Canedo, B. F., F. H. Galvao, L. Ducatti, L. S. Nacif, S. Catanozi, W. V. Soler, E. Chaib, L. A. D’Albuquerque, and W. Andraus. Liver autotransplantation in pigs without venovenous bypass: a simplified model using a supraceliac aorta cross-clamping maneuver. Ann. Transplant. 20:320–326, 2015.CrossRefGoogle Scholar
  5. 5.
    Daniel, R. K., and M. Olding. An absorbable anastomotic device for microvascular surgery: clinical applications. Plast. Reconstr. Surg. 74:337–342, 1984.CrossRefGoogle Scholar
  6. 6.
    Duffy, J. P., J. C. Hong, D. G. Farmer, R. M. Ghobrial, H. Yersiz, J. R. Hiatt, and R. W. Busuttil. Vascular complications of orthotopic liver transplantation: experience in more than 4200 patients. J Am Coll Surg 208:896–903, 2009; (discussion 903-895).CrossRefGoogle Scholar
  7. 7.
    Gurusamy, K. S., R. Koti, V. Pamecha, and B. R. Davidson. Veno-venous bypass versus none for liver transplantation. Cochrane Database Syst. Rev. 2011.  https://doi.org/10.1002/14651858.CD007712.pub2.Google Scholar
  8. 8.
    Hall, T. H., and A. Dhir. Anesthesia for liver transplantation. Semin. Cardiothorac. Vasc. Anesth. 17:180–194, 2013.CrossRefGoogle Scholar
  9. 9.
    Ho, C. S., J. K. Lunney, M. H. Franzo-Romain, G. W. Martens, Y. J. Lee, J. H. Lee, M. Wysocki, R. R. Rowland, and D. M. Smith. Molecular characterization of swine leucocyte antigen class I genes in outbred pig populations. Anim. Genet. 40:468–478, 2009.CrossRefGoogle Scholar
  10. 10.
    Ho, C. S., J. K. Lunney, J. H. Lee, M. H. Franzo-Romain, G. W. Martens, R. R. Rowland, and D. M. Smith. Molecular characterization of swine leucocyte antigen class II genes in outbred pig populations. Anim. Genet. 41:428–432, 2010.Google Scholar
  11. 11.
    Hong, C., H. Yeo, and D. Son. Vascular remodeling with a microvascular anastomotic coupler system: a case report. J. Korean Soc. Microsurg. 24:20–23, 2015.CrossRefGoogle Scholar
  12. 12.
    Ijtsma, A. J., C. S. van der Hilst, M. T. de Boer, K. P. de Jong, P. M. Peeters, R. J. Porte, and M. J. Slooff. The clinical relevance of the anhepatic phase during liver transplantation. Liver Transpl. 15:1050–1055, 2009.CrossRefGoogle Scholar
  13. 13.
    Joji, S., H. Muneshige, and Y. Ikuta. Experimental study of mechanical microvascular anastomosis with new biodegradable ring device. Br. J. Plast. Surg. 52:559–564, 1999.CrossRefGoogle Scholar
  14. 14.
    Kundakci, A., A. Pirat, O. Komurcu, A. Torgay, H. Karakayali, G. Arslan, and M. Haberal. Rifle criteria for acute kidney dysfunction following liver transplantation: incidence and risk factors. Transpl. Proc. 42:4171–4174, 2010.CrossRefGoogle Scholar
  15. 15.
    Lee, E. J., F. K. Kasper, and A. G. Mikos. Biomaterials for tissue engineering. Ann. Biomed. Eng. 42:323–337, 2014.CrossRefGoogle Scholar
  16. 16.
    Liu, C., H. Luo, M. Wan, L. Hou, X. Wang, and Y. Shi. Strategy on biological evaluation for biodegradable/absorbable materials and medical devices. Biomed. Mater. 29:269–278, 2018.Google Scholar
  17. 17.
    Mossdorf, A., F. Ulmer, K. Junge, C. Heidenhain, M. Hein, I. Temizel, U. P. Neumann, W. Schoning, and M. Schmeding. Bypass during Liver transplantation: anachronism or revival? Liver transplantation using a combined venovenous/portal venous bypass-experiences with 163 liver transplants in a newly established liver transplantation program. Gastroenterol. Res. Pract. 2015:967951, 2015.CrossRefGoogle Scholar
  18. 18.
    Nakayama, K., T. Tamiya, K. Yamamoto, and S. Akimoto. A simple new apparatus for small vessel anastomosisi (free autograft of the sigmoid included). Surgery 52:918–931, 1962.Google Scholar
  19. 19.
    O’Connor, E. F., W. M. Rozen, M. Chowdhry, N. G. Patel, W. H. Chow, M. Griffiths, and V. V. Ramakrishnan. The microvascular anastomotic coupler for venous anastomoses in free flap breast reconstruction improves outcomes. Gland Surg. 5:88–92, 2016.Google Scholar
  20. 20.
    Siiki, A., J. Sand, and J. Laukkarinen. A systematic review of biodegradable biliary stents: promising biocompatibility without stent removal. Eur. J. Gastroenterol. Hepatol. 30:813–818, 2018.CrossRefGoogle Scholar
  21. 21.
    Yeo, H., H. Kim, D. Son, C. Hong, and S. Y. Kwon. Vessel remodeling after intima-to-intima contact anastomosis. Arch. Plast. Surg. 44:95–100, 2017.CrossRefGoogle Scholar
  22. 22.
    Zhu, Z., X. Wang, J. Huang, J. Li, X. Ding, H. Wu, Y. Yuan, X. Song, and Y. Wu. Mechanical versus hand-sewn venous anastomoses in free flap reconstruction: a systematic review and meta-analysis. Plast. Reconstr. Surg. 141:1272–1281, 2018.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Division of Transplant and Vascular Surgery, Department of SurgeryKeimyung University School of MedicineDaeguKorea
  2. 2.Department of Plastic and Reconstructive SurgeryKeimyung University School of MedicineDaeguKorea
  3. 3.Department of PathologyKeimyung UniversityDaeguKorea
  4. 4.Metabiomed Co. Ltd.OsongKorea
  5. 5.Optipharm Co. Ltd.OsongKorea
  6. 6.Department of Plastic and Reconstructive Surgery, School of Medicine and Institute for Medical ScienceKeimyung UniversityDaeguSouth Korea

Personalised recommendations