Advertisement

Annals of Biomedical Engineering

, Volume 47, Issue 4, pp 990–999 | Cite as

EIT Imaging of Upper Airway to Estimate Its Size and Shape Changes During Obstructive Sleep Apnea

  • Ghazal Ayoub
  • Young Eun Kim
  • Tong In Oh
  • Sang-Wook Kim
  • Eung Je WooEmail author
Article

Abstract

Noninvasive continuous imaging of the upper airway during natural sleep was conducted for patients with obstructive sleep apnea (OSA) using the electrical impedance tomography (EIT) technique. A safe amount of alternating current (AC) was injected into the lower head through multiple surface electrodes. Since the air is an electrical insulator, upper airway narrowing during OSA altered internal current pathways and changed the induced voltage distribution. Since the measured voltage data from the surface of the lower head were influenced not only by upper airway narrowing but respiratory motions, head motions, and blood flows, we developed a pre-processing algorithm to extract the voltage component originated from upper airway closing and opening. Using an EIT image reconstruction algorithm, time-series of EIT images of the upper airway were produced with a temporal resolution of 50 frames per second. Applying a postprocessing algorithm to the reconstructed EIT images, we could extract quantitative information about changes in the size and shape during upper airway closing and opening. Results of the clinical studies with seven normal subjects and ten OSA patients show the feasibility of the new method for OSA phenotyping and treatment planning.

Keywords

Obstructive sleep apnea (OSA) Upper airway Electrical impedance tomography (EIT) Upper airway size Upper airway shape 

Notes

Acknowledgments

This work was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant Number: HI17C0984) and the National Research Foundation (NRF-2017R1A2B2002169) in Republic of Korea.

References

  1. 1.
    Berry, R. B., R. Brooks, C. E. Gamaldo, S. M. Harding, C. Marcus and B. Vaughn. The AASM manual for the scoring of sleep and associated events. Rules, Terminology and Technical Specifications, Darien, Illinois, American Academy of Sleep Medicine, 2012Google Scholar
  2. 2.
    Chesson, A. L., R. A. Ferber, J. M. Fry, M. Grigg-Damberger, K. Hartse, T. Hurwitz, S. Johnson, M. Littner, G. Kader, and G. Rosen. Practice parameters for the indications for polysomnography and related procedures. Sleep. 20:406–422, 1997.CrossRefGoogle Scholar
  3. 3.
    Engleman, H. M., and M. R. Wild. Improving CPAP use by patients with the sleep apnoea/hypopnoea syndrome (SAHS). Sleep. Med. Rev. 7:81–99, 2003.CrossRefGoogle Scholar
  4. 4.
    Frerichs, I. Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiol. Meas. 21:R1–R21, 2000.CrossRefGoogle Scholar
  5. 5.
    Frerichs, I., M. B. P. Amato, A. H. van Kaam, D. G. Tingay, Z. Zhao, B. Grychtol, M. Bodenstein, H. Gagnon, S. H. Böhm, E. Teschner, O. Stenqvist, T. Mauri, V. Torsani, L. Camporota, A. Schibler, G. K. Wolf, D. Gommers, S. Leonhardt, and A. Adler. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 72:83–93, 2017.CrossRefGoogle Scholar
  6. 6.
    Hersi, A. S. Obstructive sleep apnea and cardiac arrhythmias. Ann. Thorac. Med. 5:10–17, 2010.CrossRefGoogle Scholar
  7. 7.
    Hoffstein, V., and J. P. Szalai. Predictive value of clinical features in diagnosing obstructive sleep apnea. Sleep. 16:118–122, 1993.CrossRefGoogle Scholar
  8. 8.
    Holder, D. Detection of cerebral ischaemia in the anaesthetised rat by impedance measurement with scalp electrodes: implications for non-invasive imaging of stroke by electrical impedance tomography. Clin. Phys. Physiol. Meas. 13:63–75, 1992.CrossRefGoogle Scholar
  9. 9.
    Holder, D. S. Electrical Impedance Tomography: Methods, History and Applications. London: IOP, 2005.Google Scholar
  10. 10.
    Hua, P., E. J. Woo, J. G. Webster and W. Tompkins. Bladder fullness detection using multiple electrodes. In: Engineering in Medicine and Biology Society. Conference on Proceedings of IEEE Engineering in Medicine and Biology Society, 1988, pp. 290–291Google Scholar
  11. 11.
    Hyvärinen, A., J. Karhunen, and E. Oja. Independent Component Analysis. Series on Adaptive and Learning Systems for Signal Processing, Communications, and Control. Hoboken: Wiley, 2001.Google Scholar
  12. 12.
    Hyvärinen, A., and E. Oja. Independent component analysis: algorithms and applications. Neural. Netw. 13:411–430, 2000.CrossRefGoogle Scholar
  13. 13.
    Isono, S., J. E. Remmers, A. Tanaka, Y. Sho, J. Sato, and T. Nishino. Anatomy of pharynx in patients with obstructive sleep apnea and in normal subjects. J. Appl. Physiol. 82:1319–1326, 1997.CrossRefGoogle Scholar
  14. 14.
    Kim, Y. E., E. J. Woo, T. I. Oh and S. W. Kim. (in press). Real-time identification of upper airway occlusion using electrical impedance tomography. J. Clin. Sleep. Med. 2018.Google Scholar
  15. 15.
    Lee, K., E. J. Woo, and J. K. Seo. A fidelity-embedded regularization method for robust electrical impedance tomography. IEEE Trans. Med. Imaging. 37:1970–1977, 2018.CrossRefGoogle Scholar
  16. 16.
    Martinsen, O. G., and S. Grimnes. Bioimpedance and bioelectricity basics. London: Academic Press, 2015.Google Scholar
  17. 17.
    Oh, T. I., H. Wi, D. Y. Kim, P. J. Yoo, and E. J. Woo. A fully parallel multi-frequency EIT system with flexible electrode configuration: KHU Mark2. Physiol. Meas. 32:835–849, 2011.CrossRefGoogle Scholar
  18. 18.
    Otero, A., P. Félix, J. Presedo, and C. Zamarrón. An evaluation of indexes as support tools in the diagnosis of sleep apnea. Ann. Biomed. Eng. 40:1825–1834, 2012.CrossRefGoogle Scholar
  19. 19.
    Pham, L. V., and A. R. Schwartz. The pathogenesis of obstructive sleep apnea. J. Thorac. Dis. 7:1358–1372, 2015.Google Scholar
  20. 20.
    Pulletz, S., H. R. van Genderingen, G. Schmitz, G. Zick, D. Schädler, J. Scholz, N. Weiler, and I. Frerichs. Comparison of different methods to define regions of interest for evaluation of regional lung ventilation by EIT. Physiol. Meas. 27:S115–S127, 2006.CrossRefGoogle Scholar
  21. 21.
    Remmers, J., W. DeGroot, E. Sauerland, and A. Anch. Pathogenesis of upper airway occlusion during sleep. J. Appl. Physiol. 44:931–938, 1978.CrossRefGoogle Scholar
  22. 22.
    Romsauerova, A., A. McEwan, L. Horesh, R. Yerworth, R. Bayford, and D. S. Holder. Multi-frequency electrical impedance tomography (EIT) of the adult human head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibration. Physiol. Meas. 27:S147–S161, 2006.CrossRefGoogle Scholar
  23. 23.
    Schlebusch, T., S. Nienke, S. Leonhardt, and M. Walter. Bladder volume estimation from electrical impedance tomography. Physiol. Meas. 35:1813–1823, 2014.CrossRefGoogle Scholar
  24. 24.
    Seo, J. K., and E. J. Woo. Nonlinear Inverse Problems in Imaging. Hoboken: Wiley, 2012.Google Scholar
  25. 25.
    Veasey, S. C. Obstructive sleep apnea: re-evaluating our index of severity. Sleep. Med. 7:5–6, 2006.CrossRefGoogle Scholar
  26. 26.
    Walsh, J. H., M. S. Leigh, A. Paduch, K. J. Maddison, D. L. Philippe, J. J. Armstrong, D. D. Sampson, D. R. Hillman, and P. R. Eastwood. Evaluation of pharyngeal shape and size using anatomical optical coherence tomography in individuals with and without obstructive sleep apnoea. J. Sleep. Res. 17:230–238, 2008.CrossRefGoogle Scholar
  27. 27.
    Wellman, A., D. J. Eckert, A. S. Jordan, B. A. Edwards, C. L. Passaglia, A. C. Jackson, S. Gautam, R. L. Owens, A. Malhotra, and D. P. White. A method for measuring and modeling the physiological traits causing obstructive sleep apnea. J. Appl. Physiol. 110:1627–1637, 2011.CrossRefGoogle Scholar
  28. 28.
    Wellman, A., B. A. Edwards, S. A. Sands, R. L. Owens, S. Nemati, J. Butler, C. L. Passaglia, A. C. Jackson, A. Malhotra, and D. P. White. A simplified method for determining phenotypic traits in patients with obstructive sleep apnea. J. Appl. Physiol. 114:911–922, 2013.CrossRefGoogle Scholar
  29. 29.
    Wi, H., H. Sohal, A. L. McEwan, E. J. Woo, and T. I. Oh. Multi-frequency electrical impedance tomography system with automatic self-calibration for long-term monitoring. IEEE Trans. Biomed. Circuits. Syst. 8:119–128, 2014.CrossRefGoogle Scholar
  30. 30.
    Zinchuk, A. V., M. J. Gentry, J. Concato, and H. K. Yaggi. Phenotypes in obstructive sleep apnea: a definition, examples and evolution of approaches. Sleep. Med. Rev. 35:113–123, 2017.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, Graduate SchoolKyung Hee UniversityYonginRepublic of Korea
  2. 2.Department of Medical Engineering, Graduate SchoolKyung Hee UniversitySeoulRepublic of Korea
  3. 3.Department of OtorhinolaryngologyGyeongsang National University College of Medicine and Gyeongsang National University HospitalJinjuRepublic of Korea
  4. 4.BiLabSeoulRepublic of Korea
  5. 5.Department of Biomedical Engineering, College of MedicineKyung Hee UniversitySeoulRepublic of Korea

Personalised recommendations