Advertisement

Probing the Depth of the Myocardium: Vasculature, Transit Time, and Perfusion Within the Left Ventricular Wall

  • Erik L. RitmanEmail author
  • A. J. Vercnocke
  • M. Zamir
Article
  • 31 Downloads

Abstract

The branching architecture of arterial trees traversing the thickness of the left ventricular wall is studied to determine the way in which adequate blood supply is provided to myocardial tissue at different depths within the wall thickness from arterial trees originating at the epicardial surface. The study is based on micro-CT images of tissue biopsies, coupled with a dedicated vascular tree analysis program. The results show that this combination of methodologies allows a more detailed and much more accurate exploration of the vasculature within the sampled tissue than is possible by histological means. The spatial density of the smallest resolvable “end” arterioles is found to be higher in the sub-endocardial region than in the sub-epicardial region, with vascular branching architecture consistent with a fractal structure. The concept of “transit time” is introduced as an approximate measure of the time it takes bulk flow to reach different regions of the myocardium. Our data suggest that a transit time differential is a major contributor to the equalization of transmural perfusion gradient against unequal distribution of “end’ arteriolar density.

Keywords

Myocardial perfusion Vascular trees Microvasculature Terminal arterioles Transit time Fractals 

Notes

ACKNOWLEDGMENTS

This work was funded in part by National Institutes of Health grant, R021 HL-117359. Special thanks to Ms. J. L. Anderson and Mr. S. M. Jorgensen for their performance of the animal experiment and micro-CT scanning as well as Ms. D. C. Darling for assembling and formatting this manuscript.

Conflict of Interest

There are no conflict of interests with any one of the authors.

References

  1. 1.
    Ashikaga, H., B. A. Coppola, K. G. Yamazaki, J. Villarreal, J. H. Omens, and J. W. Covell. Changes in regional myocardial volume during cardiac cycle: implications for transmural blood flow and cardiac structure. Am. J. Physiol. Heart Circ. Physiol. 295:H610–H618, 2008.CrossRefGoogle Scholar
  2. 2.
    Ball, R. M., R. J. Bache, F. R. Cobb, and J. C. Greenfield. Regional Myocardial Blood flow during graded treadmill exercise in the dog. J. Clin. Invest. 55:43–49, 1975.CrossRefGoogle Scholar
  3. 3.
    Bassingthwaighte, J. B., R. B. King, and S. A. Roger. Fractal nature of regional myocardial blood flow heterogeneity. Circ. Res. 65:578–590, 1989.CrossRefGoogle Scholar
  4. 4.
    Bassingthwaighte, J. B., J. H. G. M. Van Beek, and R. B. King. Fractal branches: The basis of myocardial flow heterogeneities? Ann. N. Y. Acad. Sci. 591:392–401, 1990.CrossRefGoogle Scholar
  5. 5.
    Falsetti, H. L., R. J. Carroll, and M. L. Marcus. Temporal heterogeneity of myocardial blood flow in anesthetized dogs. Circulation 52:848–853, 1975.CrossRefGoogle Scholar
  6. 6.
    Feldkamp, L. A., L. L. Davis, and J. W. Kress. Practical cone- beam algorithm. J. Opt. Soc. Am. 1:612–619, 1984.CrossRefGoogle Scholar
  7. 7.
    Hudlicka, O., and M. D. Brown. Cardiac work and capillary density in normal and vascularly compromised hearts. Int. J. Microcirc. Clin. Exp. 8(4):365–382, 1989.Google Scholar
  8. 8.
    Iversen, P. O., and G. Nicolaysen. Fractals describe blood flow heterogeneity within skeletal muscle and within myocardium. Am. J. Physiol. Heart Circ. Physiol. 268:H112–H116, 1995.CrossRefGoogle Scholar
  9. 9.
    Jorgensen, S. M., O. Demirkya, and E. L. Ritman. Three-Dimensional imaging of vasculature and parenchyma in intact rodent organs with X-ray micro-CT. Am. J. Physiol. Heart Circ. Physiol. 44:1033–1114, 1998.Google Scholar
  10. 10.
    Kaimovitz, B., Y. Lanir, and G. S. Kassab. A full 3-D reconstruction of the entire porcine coronary vasculature. Am. J. Physiol. Heart Circ. Physiol. 299(4):H1064–H1076, 2010.CrossRefGoogle Scholar
  11. 11.
    Kline, T. L., M. Zamir, and E. L. Ritman. Accuracy of microvascular measurements obtained from micro-CT images. Ann. Biomed. Eng. 38(9):2851–2864, 2010.CrossRefGoogle Scholar
  12. 12.
    Kuo, L., M. J. Davis, and W. M. Chilian. Longitudinal gradients for endothelial dependent and independent vascular responses in the coronary circulation. Circulation 92:518–525, 1995.CrossRefGoogle Scholar
  13. 13.
    Larghat, A., J. Biglands, N. Maredia, J. P. Greenwood, S. G. Ball, M. Jerosch-Herold, A. Radjenovic, and S. Plein. Endocardial and epicardial myocardial perfusion determined by semi-quantitative and quantitative myocardial perfusion magnetic resonance. Int. J. Cardiovasc. Imaging 28:1499–1511, 2012.CrossRefGoogle Scholar
  14. 14.
    Marks II, R. J. Introduction to Shannon Sampling and Interpolation Theory. Berlin: Springer, p. 278 pp, 1991.CrossRefGoogle Scholar
  15. 15.
    Mayrovitz, H. N., and J. Roy. Microvascular blood flow: evidence indicates cubic dependence on arterial diameter. Am. J. Physiol. Heart Circ. Physiol. 245(6):H1031–H1038, 1983.CrossRefGoogle Scholar
  16. 16.
    Mittal, N., Y. Zhou, C. Linares, S. Ung, B. Kaimovitz, S. Molloi, and G. S. Kassab. Analysis of blood flow in the entire coronary arterial tree. Am. J. Physiol. Heart Circ. Physiol. 289:H439–H446, 2005.CrossRefGoogle Scholar
  17. 17.
    Murray, C. D. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Natl Acad. Sci. U.S.A. 12:207–214, 1916.CrossRefGoogle Scholar
  18. 18.
    Ohuchi, H., P. E. Beighley, Y. Dong, M. Zamir, and E. L. Ritman. Microvascular development in porcine right and left ventricular walls. Pediatr. Res. 61(6):676–680, 2007.CrossRefGoogle Scholar
  19. 19.
    Pullen, B. R., R. T. Ritchings, and I. Isherwood. Accuracy and meaning of computed tomography attenuation values. In: Technical Aspects of Computed Tomography, edited by T. H. Newton, and D. G. Potts. St. Louis: Mosby, 1981, pp. 3904–3917.Google Scholar
  20. 20.
    Spiller, P., F. K. Schmiel, B. Politz, M. Block, U. Fermor, W. Hackbarth, J. Jehle, R. Korfer, and H. Pannek. Measurement of systolic and diastolic flow rates in the coronary artery system by X-ray densitometry. Circulation 68(2):337–347, 1983.CrossRefGoogle Scholar
  21. 21.
    Toyota, E., Y. Ogasawara, O. Hiramatsu, H. Tachibana, F. Kajiya, S. Yamamori, and W. M. Chilian. Dynamics of flow velocities in endocardial and epicardial coronary arterioles. Am. J. Physiol. Heart Circ. Physiol. 288(4):H1598–H1603, 2005.CrossRefGoogle Scholar
  22. 22.
    Van Beek, J. H., S. A. Roger, and J. B. Bassingthwaighte. Regional myocardial flow heterogeneity explained with fractal networks. Am. J. Physiol. 257(5 Pt 2):H1670–H1680, 1989.Google Scholar
  23. 23.
    Van Horssen, P., J. P. P. M. van de Wijngaard, M. J. Brandt, I. E. Hoeffer, J. A. E. Spaan, and M. Siebes. Perfusion territories subtended by penetrating coronary arteries increase in size and decrease in number toward the subendocardium. Am. J. Physiol. Heart Circ. Physiol. 306:H496–H504, 2014.CrossRefGoogle Scholar
  24. 24.
    Vitullo, J. C., M. S. Penn, K. M. Rakusan, and P. Wicker. Effects of hypertension and aging on coronary arteriolar density. Hypertension 21:406–414, 1993.CrossRefGoogle Scholar
  25. 25.
    Wyman, B. T., W. C. Hunter, F. W. Prinzen, and E. R. McVeigh. Mapping propagation of mechanical activation in the paced heart with MRI tagging. Am. J. Physiol. Heart Circ. Physiol. 45:H881–H891, 1999.CrossRefGoogle Scholar
  26. 26.
    Zamir, M. Distributing and delivery vessels of the human heart. J. Gen. Physiol. 91(5):725–735, 1988.CrossRefGoogle Scholar
  27. 27.
    Zamir, M. The Physics of Pulsatile Flow. New York: Springer, p. 185, 2000.CrossRefGoogle Scholar
  28. 28.
    Zamir, M., A. J. Vercnocke, P. K. Edwards, J. L. Anderson, S. M. Jorgensen, and E. L. Ritman. Myocardial perfusion, characteristics of distal intramyocardial arteriolar trees. Ann. Biomed. Eng. 43:2772–2779, 2015.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Physiology and Biomedical EngineeringMayo Clinic College of Medicine and ScienceRochesterUSA
  2. 2.Department of RadiologyMayo Clinic College of Medicine and ScienceRochesterUSA
  3. 3.Departments of Applied Mathematics and of Medical BiophysicsThe University of Western OntarioLondonCanada

Personalised recommendations