Advertisement

Alterations in Joint Angular Velocity Following Traumatic Knee Injury in Ovine Models

  • Mehdi ShekarforoushEmail author
  • Kristen I. Barton
  • Jillian E. Beveridge
  • Michael Scott
  • C. Ryan Martin
  • Gregory Muench
  • Bryan J. Heard
  • Johnathan L. Sevick
  • David A. Hart
  • Cyril B. Frank
  • Nigel G. Shrive
Article
  • 29 Downloads

Abstract

Little effort has been directed towards the consequence of an injury on joint angular velocity. We hypothesized that the magnitude of knee joint angular velocity would be decreased after injury. Four injury groups were investigated in an ovine model: (1) anterior cruciate ligament (ACL) and medial collateral ligament (MCL) transection (ACL/MCL Tx) (n = 5), (2) lateral meniscectomy (Mx) (n = 5), (3) partial ACL transection (p-ACL Tx) (n = 5), and (4) partial-ACL and MCL transection (p-ACL/MCL Tx) (n = 5). The magnitude of the angular velocities decreased in the subjects of all groups at multiple points of the gait cycle. The maximum angular velocities during stance and the maximum extension angular velocities during swing were decreased in 15/20 and 17/20 subjects, respectively. There were strong correlations between morphological osteoarthritis scores and the reduction in the maximum extension angular velocities during swing 40 weeks post-p-ACL Tx and 20 weeks post-ACL/MCL Tx. There was no correlation between the decrease of the angular velocity and morphological osteoarthritis scores in the Mx group and the p-ACL/MCL Tx group. The reduction in angular velocity may be a helpful addition as a surrogate measure of OA risk after ACL injury, and could have clinical significance after further investigation in humans.

Keywords

Post-traumatic osteoarthritis Knee injury Gait Kinematics Angular velocity 

Notes

Acknowledgments

The authors would like to gratefully acknowledge Sarah Flynn, Leslie Jacques, Craig Sutherland, Dean Brown, Vanessa Oliver, Cynddae McGown, Barbara Smith and Yamini Achari for their technical expertise. This work was funded by the Canadian Institutes of Health Research and The Arthritis Society (CBF, NGS, DAH). The authors have not received any financial support that may be perceived as a conflict of interest.

References

  1. 1.
    Abramowitch, S. D., M. Yagi, E. Tsuda, and S. L.-Y. Woo. The healing medial collateral ligament following a combined anterior cruciate and medial collateral ligament injury—a biomechanical study in a goat model. J. Orthop. Res. 21:1124–1130, 2003.CrossRefGoogle Scholar
  2. 2.
    Anderst, W. J., and S. Tashman. The association between velocity of the center of closest proximity on subchondral bones and osteoarthritis progression. J. Orthop. Res. 27:71–77, 2009.CrossRefGoogle Scholar
  3. 3.
    Andriacchi, T. P., A. Mündermann, R. L. Smith, E. J. Alexander, C. O. Dyrby, and S. Koo. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann. Biomed. Eng. 32:447–457, 2004.CrossRefGoogle Scholar
  4. 4.
    Atarod, M., J. M. Rosvold, C. B. Frank, and N. G. Shrive. A novel testing platform for assessing knee joint mechanics: a parallel robotic system combined with an instrumented spatial linkage. Ann. Biomed. Eng. 42:1121–1132, 2014.CrossRefGoogle Scholar
  5. 5.
    Barton, K. I., B. J. Heard, J. L. Sevick, C. R. Martin, S. M. M. Shekarforoush, M. Chung, Y. Achari, C. B. Frank, N. G. Shrive, and D. A. Hart. Posttraumatic osteoarthritis development and progression in an ovine model of partial anterior cruciate ligament transection and effect of repeated intra-articular methylprednisolone acetate injections on Early disease. Am. J. Sports Med. 46:1596–1605, 2018.CrossRefGoogle Scholar
  6. 6.
    Barton, K. I., M. Shekarforoush, B. J. Heard, J. L. Sevick, P. Vakil, M. Atarod, R. Martin, Y. Achari, D. A. Hart, C. B. Frank, and N. G. Shrive. Use of pre-clinical surgically induced models to understand biomechanical and biological consequences of PTOA development. J. Orthop. Res. 35:454–465, 2017.CrossRefGoogle Scholar
  7. 7.
    Beveridge, J. E., B. J. Heard, N. G. Shrive, and C. B. Frank. Tibiofemoral centroid velocity correlates more consistently with cartilage damage than does contact path length in two ovine models of stifle injury. J. Orthop. Res. 31:1745–1756, 2013.Google Scholar
  8. 8.
    Beveridge, J. E., N. G. Shrive, and C. B. Frank. Meniscectomy causes significant in vivo kinematic changes and mechanically induced focal chondral lesions in a sheep model. J. Orthop. Res. 29:1397–1405, 2011.CrossRefGoogle Scholar
  9. 9.
    Beynnon, B. D., B. C. Fleming, R. Labovitch, and B. Parsons. Chronic anterior cruciate ligament deficiency is associated with increased anterior translation of the tibia during the transition from non-weightbearing to weightbearing. J. Orthop. Res. 20:332–337, 2002.CrossRefGoogle Scholar
  10. 10.
    Brandt, K. D., M. Doherty, and S. Lohmander. Osteoarthritis. Oxford: Oxford University Press, p. 511, 2003.Google Scholar
  11. 11.
    Buoncristiani, A. M., F. P. Tjoumakaris, J. S. Starman, M. Ferretti, and F. H. Fu. Anatomic double-bundle anterior cruciate ligament reconstruction. Arthrosc. J. Arthrosc. Relat. Surg. 22:1000–1006, 2006.CrossRefGoogle Scholar
  12. 12.
    Cummings, J. F., E. S. Grood, M. S. Levy, D. L. Korvick, R. Wyatt, and F. R. Noyes. The effects of graft width and graft laxity on the outcome of caprine anterior cruciate ligament reconstruction. J. Orthop. Res. 20:338–345, 2002.CrossRefGoogle Scholar
  13. 13.
    Daniel, D. M., M. L. Stone, B. E. Dobson, D. C. Fithian, D. J. Rossman, and K. R. Kaufman. Fate of the ACL-injured patient. A prospective outcome study. Am. J. Sports Med. 22:632–644, 1994.CrossRefGoogle Scholar
  14. 14.
    Defrate, L. E., R. Papannagari, T. J. Gill, J. M. Moses, N. P. Pathare, and G. Li. The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am. J. Sports Med. 34:1240–1246, 2006.CrossRefGoogle Scholar
  15. 15.
    Delincé, P., and D. Ghafil. Anterior cruciate ligament tears: conservative or surgical treatment? A critical review of the literature. Knee Surgery Sports Traumatol. Arthrosc. 20:48–61, 2012.CrossRefGoogle Scholar
  16. 16.
    Drez, D. J., J. DeLee, J. P. Holden, S. Arnoczky, F. R. Noyes, and T. S. Roberts. Anterior cruciate ligament reconstruction using bone-patellar tendon-bone allografts. A biological and biomechanical evaluation in goats. Am. J. Sports Med. 19:256–263, 1991.CrossRefGoogle Scholar
  17. 17.
    Eitzen, I., I. Holm, and M. A. Risberg. Preoperative quadriceps strength is a significant predictor of knee function two years after anterior cruciate ligament reconstruction. Br. J. Sports Med. 43:371–376, 2009.CrossRefGoogle Scholar
  18. 18.
    Frank, C. B., J. E. Beveridge, K. D. Huebner, B. J. Heard, J. E. Tapper, E. J. O. O’Brien, and N. G. Shrive. Complete ACL/MCL deficiency induces variable degrees of instability in sheep with specific kinematic abnormalities correlating with degrees of early osteoarthritis. J. Orthop. Res. 30:384–392, 2012.CrossRefGoogle Scholar
  19. 19.
    Frank, C. B., N. G. Shrive, R. S. Boorman, I. K. Y. Lo, and D. A. Hart. New perspectives on bioengineering of joint tissues: joint adaptation creates a moving target for engineering replacement tissues. Ann. Biomed. Eng. 32:458–465, 2004.CrossRefGoogle Scholar
  20. 20.
    Granata, K. P., M. F. Abel, and D. L. Damiano. Joint angular velocity in spastic gait and the influence of muscle-tendon lengthening. J. Bone Joint Surg. Am. 82:174–186, 2000.CrossRefGoogle Scholar
  21. 21.
    Grood, E. S., and W. J. Suntay. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J. Biomech. Eng. 105:136–144, 1983.CrossRefGoogle Scholar
  22. 22.
    Grooms, D. R., S. J. Page, D. S. Nichols-Larsen, A. M. W. Chaudhari, S. E. White, and J. A. Onate. Neuroplasticity associated with anterior cruciate ligament reconstruction. J. Orthop. Sport. Phys. Ther. 47:180–189, 2017.CrossRefGoogle Scholar
  23. 23.
    Hart, J. M., B. Pietrosimone, J. Hertel, and C. D. Ingersoll. Quadriceps activation following knee injuries: a systematic review. J. Athl. Train. 45:87–97, 2010.CrossRefGoogle Scholar
  24. 24.
    Kapreli, E., S. Athanasopoulos, J. Gliatis, M. Papathanasiou, R. Peeters, N. Strimpakos, P. Van Hecke, A. Gouliamos, and S. Sunaert. Anterior cruciate ligament deficiency causes brain plasticity. Am. J. Sports Med. 37:2419–2426, 2009.CrossRefGoogle Scholar
  25. 25.
    Kennedy, J. C., and P. J. Fowler. Medial and anterior instability of the knee. An anatomical and clinical study using stress machines. J. Bone Joint Surg. Am. 53:1257–1270, 1971.CrossRefGoogle Scholar
  26. 26.
    Kessler, M. A., H. Behrend, S. Henz, G. Stutz, A. Rukavina, and M. S. Kuster. Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surg. Sports Traumatol. Arthrosc. 16:442–448, 2008.CrossRefGoogle Scholar
  27. 27.
    Kotulski, Z. A., and W. Szczepinski. Error Analysis with Applications in Engineering. Dordrecht: Springer, 2010.CrossRefGoogle Scholar
  28. 28.
    Krawetz, P., and P. Nance. Gait analysis of spinal cord injured subjects: effects of injury level and spasticity. Arch. Phys. Med. Rehabil. 77:635–638, 1996.CrossRefGoogle Scholar
  29. 29.
    Lohmander, L. S., A. Östenberg, M. Englund, and H. Roos. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 50:3145–3152, 2004.CrossRefGoogle Scholar
  30. 30.
    Lohmander, L. S., and H. Roos. Knee ligament injury, surgery and osteoarthrosis. Truth or consequences? Acta Orthop. Scand. 65:605–609, 1994.CrossRefGoogle Scholar
  31. 31.
    Messner, K., and J. Gao. The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J. Anat. 193:161–178, 1998.CrossRefGoogle Scholar
  32. 32.
    Needle, A. R., A. S. Lepley, and D. R. Grooms. Central nervous system adaptation after ligamentous injury: a summary of theories, evidence, and clinical interpretation. Sport. Med. 47:1271–1288, 2017.CrossRefGoogle Scholar
  33. 33.
    Neuman, P., M. Englund, I. Kostogiannis, T. Friden, H. Roos, and L. E. Dahlberg. Prevalence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: a prospective cohort study. Am. J. Sports Med. 36:1717–1725, 2008.CrossRefGoogle Scholar
  34. 34.
    Osterhoff, G., S. Löffler, H. Steinke, C. Feja, C. Josten, and P. Hepp. Comparative anatomical measurements of osseous structures in the ovine and human knee. Knee 18:98–103, 2011.CrossRefGoogle Scholar
  35. 35.
    Palmieri-Smith, R. M., A. C. Thomas, and E. M. Wojtys. Maximizing quadriceps strength after ACL reconstruction. Clin. Sports Med. 27:405–424, 2008.CrossRefGoogle Scholar
  36. 36.
    Patterson, M., E. Delahunt, K. Sweeney, and B. Caulfield. An ambulatory method of identifying anterior cruciate ligament reconstructed gait patterns. Sensors 14:887–899, 2014.CrossRefGoogle Scholar
  37. 37.
    Rice, D. A., P. J. McNair, G. N. Lewis, and N. Dalbeth. Quadriceps arthrogenic muscle inhibition: the effects of experimental knee joint effusion on motor cortex excitability. Arthritis Res. Ther. 16:502, 2014.CrossRefGoogle Scholar
  38. 38.
    Rosvold, J. M., M. Atarod, C. B. Frank, and N. G. Shrive. An instrumented spatial linkage for measuring knee joint kinematics. Knee 23:43–48, 2016.CrossRefGoogle Scholar
  39. 39.
    Salarian, A., H. Russmann, F. J. G. Vingerhoets, C. Dehollain, Y. Blanc, P. R. Burkhard, and K. Aminian. Gait assessment in parkinson’s disease: toward an ambulatory system for long-term monitoring. IEEE Trans. Biomed. Eng. 51:1434–1443, 2004.CrossRefGoogle Scholar
  40. 40.
    Selmi, T. A. S., D. Fithian, and P. Neyret. The evolution of osteoarthritis in 103 patients with ACL reconstruction at 17 years follow-up. Knee 13:353–358, 2006.CrossRefGoogle Scholar
  41. 41.
    Shekarforoush, M., K. I. Barton, M. Atarod, B. J. Heard, J. L. Sevick, R. Martin, D. A. Hart, C. B. Frank, and N. G. Shrive. An explicit method for analysis of three-dimensional linear and angular velocity of a joint, with specific application to the knee joint. J. Med. Biol. Eng. 38:273–283, 2018.CrossRefGoogle Scholar
  42. 42.
    Shekarforoush, M., J. E. Beveridge, D. A. Hart, C. B. Frank, and N. G. Shrive. Correlation between translational and rotational kinematic abnormalities and osteoarthritis-like damage in two in vivo sheep injury models. J. Biomech. 2018.  https://doi.org/10.1016/j.jbiomech.2018.04.046.Google Scholar
  43. 43.
    Stone, W. J., S. W. Arnett, and D. L. Hoover. Lower extremity kinematics of acl-repaired and non-injured females when using knee Savers®. Int. J. Sports Phys. Ther. 12:737–746, 2017.CrossRefGoogle Scholar
  44. 44.
    Sweigart, M. A., C. F. Zhu, D. M. Burt, P. D. DeHoll, C. M. Agrawal, T. O. Clanton, and K. A. Athanasiou. Intraspecies and interspecies comparison of the compressive properties of the medial meniscus. Ann. Biomed. Eng. 32:1569–1579, 2004.CrossRefGoogle Scholar
  45. 45.
    Tapper, J. E., S. Fukushima, H. Azuma, C. Sutherland, L. Marchuk, G. M. Thornton, J. L. Ronsky, R. Zernicke, N. G. Shrive, and C. B. Frank. Dynamic in vivo three-dimensional (3D) kinematics of the anterior cruciate ligament/medial collateral ligament transected ovine stifle joint. J. Orthop. Res. 26:660–672, 2008.CrossRefGoogle Scholar
  46. 46.
    Tapper, J. E., J. L. Ronsky, M. J. Powers, C. Sutherland, T. Majima, C. B. Frank, and N. G. Shrive. In vivo measurement of the dynamic 3-D kinematics of the ovine stifle joint. J. Biomech. Eng. 126:301–305, 2004.CrossRefGoogle Scholar
  47. 47.
    Tashman, S., W. Anderst, P. Kolowich, S. Havstad, and S. Arnoczky. Kinematics of the ACL-deficient canine knee during gait: serial changes over two years. J. Orthop. Res. 22:931–941, 2004.CrossRefGoogle Scholar
  48. 48.
    Valeriani, M., D. Restuccia, V. Di Lazzaro, F. Franceschi, C. Fabbriciani, and P. Tonali. Central nervous system modifications in patients with lesion of the anterior cruciate ligament of the knee. Brain 119(Pt 5):1751–1762, 1996.CrossRefGoogle Scholar
  49. 49.
    Zaffagnini, S., S. Bignozzi, S. Martelli, N. Lopomo, and M. Marcacci. Does ACL reconstruction restore knee stability in combined lesions? An in vivo study. Clin. Orthop. Relat. Res. 454:95–99, 2007.CrossRefGoogle Scholar
  50. 50.
    Zhang, Y., and J. M. Jordan. Epidemiology of osteoarthritis. Clin. Geriatr. Med. 26:355–369, 2010.CrossRefGoogle Scholar
  51. 51.
    Zhang, L. Q., R. G. Shiavi, T. J. Limbird, and J. M. Minorik. Six degrees-of-freedom kinematics of ACL deficient knees during locomotion: compensatory mechanism. Gait Posture 17:34–42, 2003.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • Mehdi Shekarforoush
    • 1
    • 2
    • 3
    Email author
  • Kristen I. Barton
    • 1
  • Jillian E. Beveridge
    • 4
  • Michael Scott
    • 5
  • C. Ryan Martin
    • 1
    • 6
  • Gregory Muench
    • 5
  • Bryan J. Heard
    • 1
  • Johnathan L. Sevick
    • 1
    • 2
    • 3
  • David A. Hart
    • 1
    • 3
    • 6
    • 7
  • Cyril B. Frank
    • 8
  • Nigel G. Shrive
    • 1
    • 2
    • 3
  1. 1.McCaig Institute for Bone & Joint Health, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
  2. 2.Schulich School of EngineeringUniversity of CalgaryCalgaryCanada
  3. 3.Biomedical Engineering Graduate ProgramUniversity of CalgaryCalgaryCanada
  4. 4.Rhode Island Hospital/Brown UniversityProvidenceUSA
  5. 5.Faculty of Veterinary MedicineUniversity of CalgaryCalgaryCanada
  6. 6.Section of Orthopaedics, Department of SurgeryUniversity of Calgary, Foothills HospitalCalgaryCanada
  7. 7.Faculty of KinesiologyUniversity of CalgaryCalgaryCanada
  8. 8.Cumming School of Medicine, Health Sciences CentreUniversity of CalgaryCalgaryCanada

Personalised recommendations