Annals of Biomedical Engineering

, Volume 46, Issue 12, pp 1975–1987 | Cite as

Improving the Subcutaneous Mouse Tumor Model by Effective Manipulation of Magnetic Nanoparticles-Treated Implanted Cancer Cells

  • Katerina Spyridopoulou
  • Georgios Aindelis
  • Evangeli Lampri
  • Maria Giorgalli
  • Eleftheria Lamprianidou
  • Ioannis Kotsianidis
  • Anastasia Tsingotjidou
  • Aglaia Pappa
  • Orestis Kalogirou
  • Katerina ChlichliaEmail author


Murine tumor models have played a fundamental role in the development of novel therapeutic interventions and are currently widely used in translational research. Specifically, strategies that aim at reducing inter-animal variability of tumor size in transplantable mouse tumor models are of particular importance. In our approach, we used magnetic nanoparticles to label and manipulate colon cancer cells for the improvement of the standard syngeneic subcutaneous mouse tumor model. Following subcutaneous injection on the scruff of the neck, magnetically-tagged implanted cancer cells were manipulated by applying an external magnetic field towards localized tumor formation. Our data provide evidence that this approach can facilitate the formation of localized tumors of similar shape, reducing thereby the tumor size’s variability. For validating the proof-of-principle, a low-dose of 5-FU was administered in small animal groups as a representative anticancer therapy. Under these experimental conditions, the 5-FU-induced tumor growth inhibition was statistically significant only after the implementation of the proposed method. The presented approach is a promising strategy for studying accurately therapeutic interventions in subcutaneous experimental solid tumor models allowing for the detection of statistically significant differences between smaller experimental groups.


Magnetic nanoparticles Subcutaneous/transplantable mouse tumor model BALB/c mice CT26 cells Preclinical screening 





Dulbecco’s modified Eagle medium


Deoxyribonucleic acid


Inductively coupled plasma optical emission spectrometry


Phosphate-buffered saline


Sulforhodamine B


Side scatter




Magnetic nanoparticles


Fluorescently-labeled magnetic nanoparticles


Confidence interval


Standard deviation


Interquartile range



Part of the work was implemented by utilizing the facilities of the ‘OPENSCREEN-GR’ supported by the National Roadmap for Research Infrastructures under the National Strategy for Research, Technological Development, and Innovation (2014–2020) by the General Secretariat for Research and Technology (GSRT), Ministry of Education and Religious Affairs, Hellenic Republic.

Conflict of interest

Authors have no conflicts of interest to declare.


  1. 1.
    Alon, N., T. Havdala, H. Skaat, K. Baranes, M. Marcus, I. Levy, S. Margel, A. Sharoni, and O. Shefi. Magnetic micro-device for manipulating PC12 cell migration and organization. Lab Chip 15:2030–2036, 2015.CrossRefGoogle Scholar
  2. 2.
    Bradshaw, M., T. D. Clemons, D. Ho, L. Gutiérrez, F. J. Lázaro, M. J. House, T. G. St. Pierre, M. W. Fear, F. M. Wood, and K. S. Iyer. Manipulating directional cell motility using intracellular superparamagnetic nanoparticles. Nanoscale 7:4884–4889, 2015.CrossRefGoogle Scholar
  3. 3.
    Castle, J. C., M. Loewer, S. Boegel, J. de Graaf, C. Bender, A. D. Tadmor, V. Boisguerin, T. Bukur, P. Sorn, C. Paret, M. Diken, S. Kreiter, Ö. Türeci, and U. Sahin. Immunomic, genomic and transcriptomic characterization of CT26 colorectal carcinoma. BMC Genomics 15:190, 2014.CrossRefGoogle Scholar
  4. 4.
    Chen, J., N. Huang, B. Ma, M. F. Maitz, J. Wang, J. Li, Q. Li, Y. Zhao, K. Xiong, and X. Liu. Guidance of stem cells to a target destination in vivo by magnetic nanoparticles in a magnetic field. ACS Appl. Mater. Interfaces 5:5976–5985, 2013.CrossRefGoogle Scholar
  5. 5.
    Day, C. P., G. Merlino, and T. Van Dyke. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163:39–53, 2015.CrossRefGoogle Scholar
  6. 6.
    De Jong, M., and T. Maina. Of mice and humans: are they the same? Implications in cancer translational research. J. Nucl. Med. 51:501–504, 2010.CrossRefGoogle Scholar
  7. 7.
    Dranoff, G. Experimental mouse tumour models: what can be learnt about human cancer immunology? Nat. Rev. Immunol. 12:61–66, 2012.CrossRefGoogle Scholar
  8. 8.
    Farkona, S., E. P. Diamandis, and I. M. Blasutig. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016. Scholar
  9. 9.
    Friedrich, R. P., C. Janko, M. Poettler, P. Tripal, J. Zaloga, I. Cicha, S. Dürr, J. Nowak, S. Odenbach, I. Slabu, M. Liebl, L. Trahms, M. Stapf, I. Hilger, S. Lyer, and C. Alexiou. Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods. Int. J. Nanomed. 10:4185, 2015.CrossRefGoogle Scholar
  10. 10.
    Haddad, T. C., and D. Yee. Of mice and (wo)men: is this any way to test a new drug? J. Clin. Oncol. 26:830–832, 2008.CrossRefGoogle Scholar
  11. 11.
    Hughes, C. S., L. M. Postovit, and G. A. Lajoie. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10:1886–1890, 2010.CrossRefGoogle Scholar
  12. 12.
    Kasten, A., C. Grüttner, J.-P. Kühn, R. Bader, J. Pasold, and B. Frerich. Comparative in vitro study on magnetic iron oxide nanoparticles for MRI tracking of adipose tissue-derived progenitor cells. PLoS ONE 9:e108055, 2014.CrossRefGoogle Scholar
  13. 13.
    Kim, J. A., C. Åberg, A. Salvati, and K. A. Dawson. Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nat. Nanotechnol. 7:62–68, 2011.CrossRefGoogle Scholar
  14. 14.
    Kolosnjaj-Tabi, J., C. Wilhelm, O. Clément, and F. Gazeau. Cell labeling with magnetic nanoparticles: opportunity for magnetic cell imaging and cell manipulation. J. Nanobiotechnology 11:S7, 2013.CrossRefGoogle Scholar
  15. 15.
    Lechner, M. G., S. S. Karimi, K. Barry-holson, and T. E. Angell. NIH public access. J. Immunother. 36:477–489, 2014.CrossRefGoogle Scholar
  16. 16.
    Liu, J., X. Tian, M. Bao, J. Li, Y. Dou, B. Yuan, K. Yang, and Y. Ma. Manipulation of cellular orientation and migration by internalized magnetic particles. Mater. Chem. Front. Mater. Chem. Front 1:933–936, 2017.CrossRefGoogle Scholar
  17. 17.
    Longley, D. B., D. P. Harkin, and P. G. Johnston. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer 3:330–338, 2003.CrossRefGoogle Scholar
  18. 18.
    Milotti, E., V. Vyshemirsky, M. Sega, and R. Chignola. Interplay between distribution of live cells and growth dynamics of solid tumours. Sci. Rep. 2:1–10, 2012.CrossRefGoogle Scholar
  19. 19.
    Qian, L., Y. Liu, S. Wang, W. Gong, X. Jia, L. Liu, F. Ye, J. Ding, Y. Xu, Y. Fu, and F. Tian. NKG2D ligand RAE1ε induces generation and enhances the inhibitor function of myeloid-derived suppressor cells in mice. J. Cell Mol. Med. 21:2046–2054, 2017.CrossRefGoogle Scholar
  20. 20.
    Rossi, L., E. Laas, P. Mallon, A. Vincent-Salomon, J. M. Guinebretiere, F. Lerebours, R. Rouzier, J. Y. Pierga, and F. Reyal. Prognostic impact of discrepant Ki67 and mitotic index on hormone receptor-positive, HER2-negative breast carcinoma. Br. J. Cancer 113:996–1002, 2015.CrossRefGoogle Scholar
  21. 21.
    Sagiv-Barfi, I., D. K. Czerwinski, S. Levy, I. S. Alam, A. T. Mayer, S. S. Gambhir, and R. Levy. Eradication of spontaneous malignancy by local immunotherapy. Sci. Transl. Med. 2018. Scholar
  22. 22.
    Schleich, N., P. Sibret, P. Danhier, B. Ucakar, S. Laurent, R. N. Muller, C. Jérôme, B. Gallez, V. Préat, and F. Danhier. Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int. J. Pharm. 447:94–101, 2013.CrossRefGoogle Scholar
  23. 23.
    Seeliger, H., M. Guba, G. E. Koehl, A. Doenecke, M. Steinbauer, C. J. Bruns, C. Wagner, E. Frank, K. W. Jauch, and E. K. Geissler. Blockage of 2-deoxy-D-ribose-induced angiogenesis with rapamycin counteracts a thymidine phosphorylase-based escape mechanism available for colon cancer under 5-fluorouracil therapy. Clin. Cancer Res. 10:1843–1852, 2004.CrossRefGoogle Scholar
  24. 24.
    Silva, L. H. A., F. F. Cruz, M. M. Morales, D. J. Weiss, and P. R. M. Rocco. Magnetic targeting as a strategy to enhance therapeutic effects of mesenchymal stromal cells. Stem Cell Res. Ther. 8:58, 2017.CrossRefGoogle Scholar
  25. 25.
    Spyridopoulou, K., A. Makridis, N. Maniotis, N. Karypidou, E. Myrovali, T. Samaras, M. Angelakeris, K. Chlichlia, and O. Kalogirou. Effect of low frequency magnetic fields on the growth of MNPs-treated HT29 colon cancer cells. Nanotechnology 29:175101, 2018.CrossRefGoogle Scholar
  26. 26.
    Spyridopoulou, K., A. Tiptiri-Kourpeti, E. Lampri, E. Fitsiou, S. Vasileiadis, M. Vamvakias, H. Bardouki, A. Goussia, V. Malamou-Mitsi, M. I. Panayiotidis, A. Galanis, A. Pappa, and K. Chlichlia. Dietary mastic oil extracted from Pistacia lentiscus var. chia suppresses tumor growth in experimental colon cancer models. Sci. Rep. 7:3782, 2017.CrossRefGoogle Scholar
  27. 27.
    Suggitt, M., and M. C. Bibby. 50 years of preclinical anticancer drug screening : empirical to target-driven approaches. Clin. Cancer Res. 11:971–981, 2005.Google Scholar
  28. 28.
    Sullivan, K. M., A. Dean, and M. S. Minn. OpenEpi: a web-based epidemiologic and statistical calculator for public health. Public Health Rep. 124:471–474, 2009.CrossRefGoogle Scholar
  29. 29.
    Summers, H. Bionanoscience: nanoparticles in the life of a cell. Nat. Nanotechnol. 7:9–10, 2011.CrossRefGoogle Scholar
  30. 30.
    Suzuki, H., T. Toyooka, and Y. Ibuki. Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environ. Sci. Technol. 41:3018–3024, 2007.CrossRefGoogle Scholar
  31. 31.
    Talmadge, J. E., R. K. Singh, I. J. Fidler, and A. Raz. Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am. J. Pathol. 170:793–804, 2007.CrossRefGoogle Scholar
  32. 32.
    Theumer, A., C. Gräfe, F. Bähring, C. Bergemann, A. Hochhaus, and J. H. Clement. Superparamagnetic iron oxide nanoparticles exert different cytotoxic effects on cells grown in monolayer cell culture versus as multicellular spheroids. J. Magn. Magn. Mater. 380:27–33, 2015.CrossRefGoogle Scholar
  33. 33.
    Wagner, M., V. Roh, M. Strehlen, A. Laemmle, D. Stroka, B. Egger, M. Trochsler, K. K. Hunt, D. Candinas, and S. A. Vorburger. Effective treatment of advanced colorectal cancer by rapamycin and 5-FU/oxaliplatin monitored by TIMP-1. J. Gastrointest. Surg. 13:1781–1790, 2009.CrossRefGoogle Scholar
  34. 34.
    Weissleder, R., M. Nahrendorf, and M. J. Pittet. Imaging macrophages with nanoparticles. Nat. Mater. 13:125–138, 2014.CrossRefGoogle Scholar
  35. 35.
    Whiteside, T. The tumor microenvironment and its role in promoting tumor growth. Oncogene 27:5904–5912, 2013.CrossRefGoogle Scholar
  36. 36.
    Wilhelm, C., F. Gazeau, J. Roger, J. N. Pons, and J. C. Bacri. Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir 18:8148–8155, 2002.CrossRefGoogle Scholar
  37. 37.
    Yanai, A., U. O. Häfeli, A. L. Metcalfe, P. Soema, L. Addo, C. Y. Gregory-Evans, K. Po, X. Shan, O. L. Moritz, and K. Gregory-Evans. Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell Transplant. 21:1137–1148, 2012.CrossRefGoogle Scholar
  38. 38.
    Zitvogel, L., J. M. Pitt, R. Daillère, M. J. Smyth, and G. Kroemer. Mouse models in oncoimmunology. Nat. Rev. Cancer 16:759–773, 2016.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Katerina Spyridopoulou
    • 1
  • Georgios Aindelis
    • 1
  • Evangeli Lampri
    • 1
  • Maria Giorgalli
    • 1
  • Eleftheria Lamprianidou
    • 2
  • Ioannis Kotsianidis
    • 2
  • Anastasia Tsingotjidou
    • 3
  • Aglaia Pappa
    • 1
  • Orestis Kalogirou
    • 4
  • Katerina Chlichlia
    • 1
    Email author
  1. 1.Department of Molecular Biology and GeneticsDemocritus University of ThraceAlexandroupolisGreece
  2. 2.Department of Hematology, School of MedicineDemocritus University of ThraceAlexandroupolisGreece
  3. 3.Laboratory of Anatomy, Histology and Embryology, School of Veterinary MedicineAristotle University of ThessalonikiThessalonikiGreece
  4. 4.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations