Advertisement

Annals of Biomedical Engineering

, Volume 46, Issue 12, pp 2102–2111 | Cite as

On the Significance of Systolic Flow Waveform on Aortic Valve Energy Loss

  • Hoda Hatoum
  • Brandon L. Moore
  • Lakshmi Prasad Dasi
Article

Abstract

This study aims to quantitatively and qualitatively assess energy dissipation in the aortic valve as a function of systolic aortic flow waveform representing pathologies where flow time-to-peak is delayed. A bioprosthetic valve was tested in the aortic position of a left-heart simulator under physiological pressure and flow conditions. The flow loop piston pump was programmed to generate three different flow waveforms each with a different peak time annotated as early peak (EP) with a rapid acceleration, mid peak (MP) and late peak (LP) with a rapid deceleration. Energy dissipation was calculated from flow and pressure measurements while sinus vorticity dynamics were evaluated using time-resolved planar particle image velocimetry. Average pressure gradients during systole are found 30.2 ± 0.19, 30.7 ± 0.25 and 32.9 ± 0.29 mmHg and average dissipation over systole is found 0.95 ± 0.026, 1.05 ± 0.034 and 1.25 ± 0.043 W for EP, MP and LP respectively. As systole’s acceleration phase is slower, sinus vortices are more likely to form, necessitating more energy exchange from shear layers inducing more viscous dissipation. EP found in healthy individuals is superior in terms of reducing energy dissipation and increasing aortic valve efficiency. In the context of possible left ventricular dysfunction and aortic stenosis, this means that delayed time-to-peak in the aortic flow waveform seen is not compensatory.

Keywords

Aortic valve Fluid mechanics Aortic valve efficiency Energy dissipation Time to peak Heart failure 

Notes

Acknowledgments

The research done was partly supported by National Institutes of Health (NIH) under Award Number R01HL119824.

Conflict of interest

Dr. Dasi reports having a patent application filed on novel polymeric valves, vortex generator and super-hydrophobic valve designs. No other conflicts were reported.

Supplementary material

10439_2018_2102_MOESM1_ESM.mp4 (4.6 mb)
Video 1: Main sinus flow streak visualization for Early Peak, Mid Peak and Late Peak cases. Supplementary material 1 (MP4 4760 kb)

References

  1. 1.
    Dasi, L. P., L. Ge, H. A. Simon, F. Sotiropoulos, and A. P. Yoganathan. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys. Fluids 19:067105, 2007.CrossRefGoogle Scholar
  2. 2.
    Dasi, L. P., H. Hatoum, A. Kheradvar, R. Zareian, S. H. Alavi, W. Sun, C. Martin, T. Pham, Q. Wang, and P. A. Midha. On the mechanics of transcatheter aortic valve replacement. Ann. Biomed. Eng. 45:310–331, 2017.CrossRefGoogle Scholar
  3. 3.
    Fukuta, H., and W. C. Little. The cardiac cycle and the physiologic basis of left ventricular contraction, ejection, relaxation, and filling. Heart Fail. Clin. 4:1–11, 2008.CrossRefGoogle Scholar
  4. 4.
    Gao, L., and S. C. M. Yu. Development of the trailing shear layer in a starting jet during pinch-off. J. Fluid Mech. 700:382–405, 2012.CrossRefGoogle Scholar
  5. 5.
    Gharib, M., E. Rambod, and K. Shariff. A universal time scale for vortex ring formation. J. Fluid Mech. 360:121–140, 1998.CrossRefGoogle Scholar
  6. 6.
    Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Effect of severe bioprosthetic valve tissue ingrowth and inflow calcification on valve-in-valve performance. J. Biomech. 74:171–179, 2018.CrossRefGoogle Scholar
  7. 7.
    Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Implantation depth and rotational orientation effect on valve-in-valve hemodynamics and sinus flow. Ann. Thorac. Surg. 2018.  https://doi.org/10.1016/j.athoracsur.2018.01.070.Google Scholar
  8. 8.
    Hatoum, H., J. Dollery, S. M. Lilly, J. Crestanello, and L. P. Dasi. Impact of patient morphologies on sinus flow stasis in transcatheter aortic valve replacement: an in-vitro study. J. Thorac. Cardiovasc. Surg. 2018.  https://doi.org/10.1016/j.jtcvs.2018.05.086.Google Scholar
  9. 9.
    Hatoum, H., F. Heim, and L. P. Dasi. Stented valve dynamic behavior induced by polyester fiber leaflet material in transcatheter aortic valve devices. J. Mech. Behav. Biomed. Mater. 86:232–239, 2018.CrossRefGoogle Scholar
  10. 10.
    Hatoum, H., B. L. Moore, P. Maureira, J. Dollery, J. A. Crestanello, and L. P. Dasi. Aortic sinus flow stasis likely in valve-in-valve transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 54(1):32–43, 2017.CrossRefGoogle Scholar
  11. 11.
    Hatoum, H., A. Yousefi, S. Lilly, P. Maureira, J. Crestanello, and L. P. Dasi. An in-vitro evaluation of turbulence after transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 2018.  https://doi.org/10.1016/j.jtcvs.2018.05.042.Google Scholar
  12. 12.
    Ho, S., H. Banerjee, Y. Y. Foo, H. Godaba, W. M. M. Aye, J. Zhu, and C. H. Yap. Experimental characterization of a dielectric elastomer fluid pump and optimizing performance via composite materials. J. Intell. Mater. Syst. Struct. 28:3054–3065, 2017.CrossRefGoogle Scholar
  13. 13.
    Kamimura, D., S. Hans, T. Suzuki, E. R. Fox, M. E. Hall, S. K. Musani, M. R. McMullan, and W. C. Little. Delayed time to peak velocity is useful for detecting severe aortic stenosis. J. Am. Heart Assoc. 5:e003907, 2016.CrossRefGoogle Scholar
  14. 14.
    Kanski, M., P. M. Arvidsson, J. Töger, R. Borgquist, E. Heiberg, M. Carlsson, and H. Arheden. Left ventricular fluid kinetic energy time curves in heart failure from cardiovascular magnetic resonance 4d flow data. J. Cardiovasc. Magn. Reson. 17:111, 2015.CrossRefGoogle Scholar
  15. 15.
    Li, Z., Y. Wang, C. C. Foo, H. Godaba, J. Zhu, and C. H. Yap. The mechanism for large-volume fluid pumping via reversible snap-through of dielectric elastomer. J. Appl. Phys. 122:084503, 2017.CrossRefGoogle Scholar
  16. 16.
    Li, Z., J. Zhu, C. C. Foo, and C. H. Yap. A robust dual-membrane dielectric elastomer actuator for large volume fluid pumping via snap-through. Appl. Phys. Lett. 111:212901, 2017.CrossRefGoogle Scholar
  17. 17.
    Maxworthy, T. The structure and stability of vortex rings. J. Fluid Mech. 51:15–32, 1972.CrossRefGoogle Scholar
  18. 18.
    Mohseni, K., and M. Gharib. A model for universal time scale of vortex ring formation. Phys. Fluids 10:2436–2438, 1998.CrossRefGoogle Scholar
  19. 19.
    Mohseni, K., H. Ran, and T. Colonius. Numerical experiments on vortex ring formation. J. Fluid Mech. 430:267–282, 2001.CrossRefGoogle Scholar
  20. 20.
    Moore, B. L., and L. P. Dasi. Coronary flow impacts aortic leaflet mechanics and aortic sinus hemodynamics. Ann. Biomed. Eng. 43:2231–2241, 2015.CrossRefGoogle Scholar
  21. 21.
    Okafor, I. U., A. Santhanakrishnan, V. S. Raghav, and A. P. Yoganathan. Role of mitral annulus diastolic geometry on intraventricular filling dynamics. J. Biomech. Eng. 137:121007, 2015.CrossRefGoogle Scholar
  22. 22.
    Reul, H, and Talukder, N, Heart valve mechanics. In: Quantitative Cardiovascular Studies Clinical and Research Applications of Engineering Principles, 1979, pp. 527–564.Google Scholar
  23. 23.
    Reynolds, O. On the resistance encountered by vortex rings, and the relation between the vortex rings and streamlines of a disk. Nature 14:477–479, 1876.Google Scholar
  24. 24.
    Vasudevan, V., A. J. J. Low, S. P. Annamalai, S. Sampath, K. K. Poh, T. Totman, M. Mazlan, G. Croft, A. M. Richards, and D. P. V. de Kleijn. Flow dynamics and energy efficiency of flow in the left ventricle during myocardial infarction. Biomech. Model. Mechanobiol. 16:1503–1517, 2017.CrossRefGoogle Scholar
  25. 25.
    Wang, Y., Z. Li, L. Qin, G. Caddy, C. H. Yap, and J. Zhu. Dielectric elastomer fluid pump of high pressure and large volume via synergistic snap-through. J. Appl. Mech. 85:101003, 2018.CrossRefGoogle Scholar
  26. 26.
    Yap, C.-H., L. P. Dasi, and A. P. Yoganathan. Dynamic hemodynamic energy loss in normal and stenosed aortic valves. J. Biomech. Eng. 132:021005, 2010.CrossRefGoogle Scholar
  27. 27.
    Yoganathan, A. P., Z. He, and S. Casey Jones. Fluid mechanics of heart valves. Annu. Rev. Biomed. Eng. 6:331–362, 2004.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Hoda Hatoum
    • 1
  • Brandon L. Moore
    • 2
  • Lakshmi Prasad Dasi
    • 1
    • 3
  1. 1.Department of Biomedical EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Department of Mechanical EngineeringColorado State UniversityFort CollinsUSA
  3. 3.Division of Cardiac SurgeryThe Ohio State UniversityColumbusUSA

Personalised recommendations