Advertisement

Annals of Biomedical Engineering

, Volume 46, Issue 10, pp 1548–1557 | Cite as

Clinical Translation of the LevelCheck Decision Support Algorithm for Target Localization in Spine Surgery

  • Amir Manbachi
  • Tharindu De Silva
  • Ali Uneri
  • Matthew Jacobson
  • Joseph Goerres
  • Michael Ketcha
  • Runze Han
  • Nafi Aygun
  • David Thompson
  • Xiaobu Ye
  • Sebastian Vogt
  • Gerhard Kleinszig
  • Camilo Molina
  • Rajiv Iyer
  • Tomas Garzon-Muvdi
  • Michael R. Raber
  • Mari Groves
  • Jean-Paul Wolinsky
  • Jeffrey H. Siewerdsen
Medical Robotics

Abstract

Recent work has yielded a method for automatic labeling of vertebrae in intraoperative radiographs as an assistant to manual level counting. The method, called LevelCheck, previously demonstrated promise in phantom studies and retrospective studies. This study aims to: (#1) Analyze the effect of LevelCheck on accuracy and confidence of localization in two modes: (a) Independent Check (labels displayed after the surgeon’s decision) and (b) Active Assistant (labels presented before the surgeon’s decision). (#2) Assess the feasibility and utility of LevelCheck in the operating room. Two studies were conducted: a laboratory study investigating these two workflow implementations in a simulated operating environment with 5 surgeons, reviewing 62 cases selected from a dataset of radiographs exhibiting a challenge to vertebral localization; and a clinical study involving 20 patients undergoing spine surgery. In Study #1, the median localization error without assistance was 30.4% (IQR = 5.2%) due to the challenging nature of the cases. LevelCheck reduced the median error to 2.4% for both the Independent Check and Active Assistant modes (p < 0.01). Surgeons found LevelCheck to increase confidence in 91% of cases. Study #2 demonstrated accuracy in all cases. The algorithm runtime varied from 17 to 72 s in its current implementation. The algorithm was shown to be feasible, accurate, and to improve confidence during surgery.

Keywords

Spine surgery Clinical translation Surgical workflow Intraoperative imaging LevelCheck Image-guided surgery 

Notes

Acknowledgments

This work would have not been possible without the cooperation of Kelly Menon, Tangie Gaither-Bacon and Samantha Ernest as the Neurosurgical nursing team who supported the study in the operating rooms. Similarly, the support received from the radiology team is acknowledged—in particular: Rebecca Engberg, Jessica Enwright Wood, Charles Arterson, Joshua Shannon, Aris Thompson, and Lauryn Hancock. Finally, the authors would like to thank Ian Suk for his help and support.

Conflict of interest

The work was supported by the National Institutes of Health (NIH R01-EB-017226) and academic-industry partnership with Siemens Healthineers (XP Division, Erlangen, Germany). The authors have publicly available intellectual property associated with this work, yet apart from paid employment by Siemens employees (Sebastian Vogt and Gerhard Kleinszig), the authors have no personal financial interest in the work reported in this paper.

References

  1. 1.
    Adverse Events, Near Misses, and Errors. Patient Safety Primer. Patient Safety Network, Agency for Healthcare Research and Quality, 2016. https://psnet.ahrq.gov/primers/primer/34/adverse-events-near-misses-and-errors Accessed April 22, 2017
  2. 2.
    De Silva, T., S. L. Lo, N. Aygun, D. M. Aghion, A. Boah, R. Petteys, A. Uneri, M. D. Ketcha, T. Yi, S. Vogt, G. Kleinszig, W. Wei, M. Weiten, X. Ye, A. Bydon, D. M. Sciubba, T. F. Witham, J. P. Wolinsky, and J. H. Siewerdsen. Utility of the LevelCheck algorithm for decision support in vertebral localization. Spine (Phila Pa 1976) 41(20):E1249–E1256, 2016.  https://doi.org/10.1097/brs.0000000000001589.CrossRefGoogle Scholar
  3. 3.
    De Silva, T., A. Uneri, M. D. Ketcha, S. Reaungamornrat, J. Goerres, M. Jacobson, S. Vogt, G. Kleinszig, A. J. Khanna, J. P. Wolinsky, and J. H. Siewerdsen. Registration of MRI to intraoperative radiographs for target localization in spinal interventions. Phys. Med. Biol. 62(2):684–701, 2017.  https://doi.org/10.1088/1361-6560/62/2/684.CrossRefGoogle Scholar
  4. 4.
    De Silva, T., A. Uneri, M. D. Ketcha, S. Reaungamornrat, G. Kleinszig, S. Vogt, N. Aygun, S. F. Lo, J. P. Wolinsky, and J. H. Siewerdsen. 3D–2D image registration for target localization in spine surgery: investigation of similarity metrics providing robustness to content mismatch. Phys. Med. Biol. 61(8):3009–3025, 2016.  https://doi.org/10.1088/0031-9155/61/8/3009.CrossRefGoogle Scholar
  5. 5.
    Hogan L. J., B. K. Rutherford, L. Governor, V. T. Mitchell, and P. T. Nay. Maryland Hospital Patient Safety Program Annual Report Fiscal Year 2015 Department of Health and Mental Hygiene; Office of Health Care Quality, 2015. https://health.maryland.gov/ohcq/hos/Documents/Maryland%20Hospital%20Patient%20Safety%20Program%20Report,%20FY%2015.pdf, FY 15.pdf. Accessed April 16, 2017.
  6. 6.
    Hsiang, J. Wrong-level surgery: a unique problem in spine surgery. Surg. Neurol. Int. 2:47, 2011.  https://doi.org/10.4103/2152-7806.79769.Google Scholar
  7. 7.
    Ketcha, M. D., T. De Silva, A. Uneri, M. W. Jacobson, J. Goerres, G. Kleinszig, S. Vogt, J. P. Wolinsky, and J. H. Siewerdsen. Multi-stage 3D-2D registration for correction of anatomical deformation in image-guided spine surgery. Phys. Med. Biol. 2017.  https://doi.org/10.1088/1361-6560/aa6b3e.Google Scholar
  8. 8.
    Levinson D.R. Adverse events in hospitals: national incidence among medicare beneficiaries. Washington, DC: US Department of Health and Human Services, Office of the Inspector General; November 2010. Report No. OEI-06-09-00090. https://psnet.ahrq.gov/resources/resource/19811 Accessed April 22, 2017
  9. 9.
    Lo, S. F., Y. Otake, V. Puvanesarajah, A. S. Wang, A. Uneri, T. De Silva, S. Vogt, G. Kleinszig, B. D. Elder, C. R. Goodwin, T. A. Kosztowski, J. A. Liauw, M. Groves, A. Bydon, D. M. Sciubba, T. F. Witham, J. P. Wolinsky, N. Aygun, Z. L. Gokaslan, and J. H. Siewerdsen. Automatic localization of target vertebrae in spine surgery. Spine (Phila Pa 1976) 40(8):E476–E483, 2015.  https://doi.org/10.1097/brs.0000000000000814.CrossRefGoogle Scholar
  10. 10.
    Makary M. A. How to Stop Hospitals from Killing Us—WSJ. The Wall Street Journal. https://www.wsj.com/articles/SB10000872396390444620104578008263334441352. Published 2012. Accessed April 13, 2017.
  11. 11.
    Mody, M. G., A. Nourbakhsh, D. L. Stahl, M. Gibbs, M. Alfawareh, and K. J. Garges. The prevalence of wrong level surgery among spine surgeons. Spine (Phila Pa 1976) 33(2):194–198, 2008.  https://doi.org/10.1097/brs.0b013e31816043d1.CrossRefGoogle Scholar
  12. 12.
    Otake, Y., S. Schafer, J. W. Stayman, W. Zbijewski, G. Kleinszig, R. Graumann, A. J. Khanna, and J. H. Siewerdsen. Automatic localization of vertebral levels in x-ray fluoroscopy using 3D-2D registration: a tool to reduce wrong-site surgery. Phys. Med. Biol. 57(17):5485–5508, 2012.  https://doi.org/10.1088/0031-9155/57/17/5485.CrossRefGoogle Scholar
  13. 13.
    Otake, Y., A. S. Wang, J. W. Stayman, A. Uneri, G. Kleinszig, S. Vogt, A. J. Khanna, Z. L. Gokaslan, and J. H. Siewerdsen. Robust 3D–2D image registration: application to spine interventions and vertebral labeling in the presence of anatomical deformation. Phys. Med. Biol. 58(23):8535–8553, 2013.  https://doi.org/10.1088/0031-9155/58/23/8535.CrossRefGoogle Scholar
  14. 14.
    Otake, Y., A. S. Wang, A. Uneri, G. Kleinszig, S. Vogt, N. Aygun, S. F. Lo, J. P. Wolinsky, Z. L. Gokaslan, and J. H. Siewerdsen. 3D–2D registration in mobile radiographs: algorithm development and preliminary clinical evaluation. Phys. Med. Biol. 60(5):2075–2090, 2015.  https://doi.org/10.1088/0031-9155/60/5/2075.CrossRefGoogle Scholar
  15. 15.
    Samulski, M., R. Hupse, C. Boetes, R. D. M. Mus, G. J. den Heeten, and N. Karssemeijer. Using computer-aided detection in mammography as a decision support. Eur. Radiol. 20(10):2323–2330, 2010.  https://doi.org/10.1007/s00330-010-1821-8.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Amir Manbachi
    • 1
    • 2
  • Tharindu De Silva
    • 1
  • Ali Uneri
    • 1
  • Matthew Jacobson
    • 1
  • Joseph Goerres
    • 1
  • Michael Ketcha
    • 1
  • Runze Han
    • 1
  • Nafi Aygun
    • 3
  • David Thompson
    • 4
  • Xiaobu Ye
    • 2
  • Sebastian Vogt
    • 5
  • Gerhard Kleinszig
    • 5
  • Camilo Molina
    • 2
  • Rajiv Iyer
    • 2
  • Tomas Garzon-Muvdi
    • 2
  • Michael R. Raber
    • 2
  • Mari Groves
    • 2
  • Jean-Paul Wolinsky
    • 2
  • Jeffrey H. Siewerdsen
    • 1
    • 2
    • 3
    • 4
    • 6
  1. 1.Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of NeurosurgeryJohns Hopkins University School of Medicine, The Johns Hopkins HospitalBaltimoreUSA
  3. 3.Russell H. Morgan Department of RadiologyJohns Hopkins University, The Johns Hopkins HospitalBaltimoreUSA
  4. 4.Armstrong Institute for Patient Safety and QualityJohns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Siemens HealthineersErlangenGermany
  6. 6.Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations