Annals of Biomedical Engineering

, Volume 46, Issue 12, pp 2000–2011 | Cite as

Contractility of Airway Smooth Muscle Cell in Response to Zinc Oxide Nanoparticles by Traction Force Microscopy

  • Feng Lin
  • Haihui Zhang
  • Jianyong Huang
  • Chunyang XiongEmail author


Zinc oxide nanoparticles (ZnO-NPs) have been widely used in engineering and biomedicine. However, their adverse pathological effects and mechanisms, especially the biomechanical effects on respiratory system where airway smooth muscle cell (ASMC) contractility regulates the airway response and lung function, are not fully understood. Herein, we used traction force microscopy (TFM) method to investigate whether ZnO-NPs of different concentrations (0.1–10 μg/mL) can alter ASMC contractility (basal and agonist-stimulated) after a short-term exposure and the potential mechanisms. We found that ZnO-NPs exposure led to a decrease of ASMC viability in a dose-dependent manner. Notably, basal contractility was enhanced when the concentration of ZnO-NPs was less than 0.1 μg/mL and decreased afterwards, while KCl-stimulated contractility was reduced in all cases of ZnO-NPs treated groups. Cytoskeleton structure was also found to be significantly altered in ASMC with the stimulation of ZnO-NPs. More importantly, it seems that ZnO-NPs with low concentration (< 0.1 μg/mL) would change ASMC contractility without any apparent cytotoxicity through disruption of the microtubule assembly. Moreover, our results also emerged that ASMC contractility responses were regulated by clathrin-mediated endocytosis and cytoskeleton remodeling. Together, these findings indicate the susceptibility of cell mechanics to NPs exposure, suggesting that cell mechanical testing will contribute to uncover the pathological mechanisms of NPs in respiratory diseases.


Nanoparticle Airway smooth muscle cell Toxicity Contractility 



We acknowledge the support of the National Natural Science Foundation of China (NSFC) under Grant Nos. 11472013, 11772006 and 11772004.

Supplementary material

10439_2018_2098_MOESM1_ESM.pdf (164 kb)
Supplementary material 1 (PDF 164 kb)


  1. 1.
    Ababou, A., E. Rostkova, S. Mistry, C. Le Masurier, M. Gautel, and M. Pfuhl. Myosin binding protein C positioned to play a key role in regulation of muscle contraction: structure and interactions of domain C1. J. Mol. Biol. 384:615–630, 2008.CrossRefGoogle Scholar
  2. 2.
    An, S. S., T. R. Bai, J. H. T. Bates, J. L. Black, R. H. Brown, V. Brusasco, P. Chitano, L. Deng, M. Dowell, D. H. Eidelman, B. Fabry, N. J. Fairbank, L. E. Ford, J. J. Fredberg, W. T. Gerthoffer, S. H. Gilbert, R. Gosens, S. J. Gunst, A. J. Halayko, R. H. Ingram, C. G. Irvin, A. L. James, L. J. Janssen, G. G. King, D. A. Knight, A. M. Lauzon, O. J. Lakser, M. S. Ludwig, K. R. Lutchen, G. N. Maksym, J. G. Martin, T. Mauad, B. E. McParland, S. M. Mijailovich, H. W. Mitchell, R. W. Mitchell, W. Mitzner, T. M. Murphy, P. D. Pare, R. Pellegrino, M. J. Sanderson, R. R. Schellenberg, C. Y. Seow, P. S. P. Silveira, P. G. Smith, J. Solway, N. L. Stephens, P. J. Sterk, A. G. Stewart, D. D. Tang, R. S. Tepper, T. Tran, and L. Wang. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. Eur. Respir. J. 29:834–860, 2007.CrossRefGoogle Scholar
  3. 3.
    Bello, D., J. Martin, C. Santeufemio, Q. W. Sun, K. L. Bunker, M. Shafer, and P. Demokritou. Physicochemical and morphological characterisation of nanoparticles from photocopiers: implications for environmental health. Nanotoxicology 7:989–1003, 2013.CrossRefGoogle Scholar
  4. 4.
    Berntsen, P., C. Y. Park, B. Rothen-Rutishauser, A. Tsuda, T. M. Sager, R. M. Molina, T. C. Donaghey, A. M. Alencar, D. I. Kasahara, T. Ericsson, E. J. Millet, J. Swenson, D. J. Tschumperlin, J. P. Butler, J. D. Brain, J. J. Fredberg, P. Gehr, and E. H. Zhou. Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells. J. R. Soc Interface 7(Suppl 3):S331–S340, 2010.CrossRefGoogle Scholar
  5. 5.
    Burke, D. P., and D. J. Kelly. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model. PLoS ONE 7(7):e40737, 2012.CrossRefGoogle Scholar
  6. 6.
    Burke, D. P., H. Khayyeri, and D. J. Kelly. Substrate stiffness and oxygen availability as regulators of mesenchymal stem cell differentiation within a mechanically loaded bone chamber. Biomech. Model. Mechanobiol. 14:93–105, 2015.CrossRefGoogle Scholar
  7. 7.
    Butler, J. P., I. M. Tolic-Norrelykke, B. Fabry, and J. J. Fredberg. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. 282:C595–C605, 2002.CrossRefGoogle Scholar
  8. 8.
    Chaloupka, K., Y. Malam, and A. M. Seifalian. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 28:580–588, 2010.CrossRefGoogle Scholar
  9. 9.
    Choudhury, D., P. L. Xavier, K. Chaudhari, R. John, A. K. Dasgupta, T. Pradeep, and G. Chakrabarti. Unprecedented inhibition of tubulin polymerization directed by gold nanoparticles inducing cell cycle arrest and apoptosis. Nanoscale 5:4476–4489, 2013.CrossRefGoogle Scholar
  10. 10.
    Churg, A., M. Brauer, M. D. Avila-Casado, T. I. Fortoul, and J. L. Wright. Chronic exposure to high levels of particulate air pollution and small airway remodeling. Environ. Health Perspect. 111:714–718, 2003.CrossRefGoogle Scholar
  11. 11.
    Danowski, B. A. Fibroblast contractility and actin organization are stimulated by microtubule inhibitors. J. Cell Sci. 93:255–266, 1989.Google Scholar
  12. 12.
    Deng, L. H., N. J. Fairbank, D. J. Cole, J. J. Fredberg, and G. N. Maksym. Airway smooth muscle tone modulates mechanically induced cytoskeletal stiffening and remodeling. J. Appl. Physiol. 99:634–641, 2005.CrossRefGoogle Scholar
  13. 13.
    Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.CrossRefGoogle Scholar
  14. 14.
    Fairbank, N. J., S. C. Connolly, J. D. MacKinnon, K. Wehry, L. H. Deng, and G. N. Maksym. Airway smooth muscle cell tone amplifies contractile function in the presence of chronic cyclic strain. Am. J. Physiol. 295:L479–L488, 2008.Google Scholar
  15. 15.
    Gass, S., J. M. Cohen, G. Pyrgiotakis, G. A. Sotiriou, S. E. Pratsinis, and P. Demokritou. Safer formulation concept for flame-generated engineered nanomaterials. ACS Sustain. Chem. Eng. 1:843–857, 2013.CrossRefGoogle Scholar
  16. 16.
    Gavara, N., R. Sunyer, P. Roca-Cusachs, R. Farre, M. Rotger, and D. Navajas. Thrombin-induced contraction in alveolar epithelial cells probed by traction microscopy. J. Appl. Physiol. 101:512–520, 2006.CrossRefGoogle Scholar
  17. 17.
    Geiser, M., B. Rothen-Rutishauser, N. Kapp, S. Schurch, W. Kreyling, H. Schulz, M. Semmler, V. I. Hof, J. Heyder, and P. Gehr. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect. 113:1555–1560, 2005.CrossRefGoogle Scholar
  18. 18.
    Heizmann, C. W., and J. A. Cox. New perspectives on S100 proteins: a multi-functional Ca2+-, Zn2+- and Cu2+-binding protein family. Biometals 11:383–397, 1998.CrossRefGoogle Scholar
  19. 19.
    Hirst, S. J. Airway smooth muscle cell culture: application to studies of airway wall remodelling and phenotype plasticity in asthma. Eur. Respir. J. 9:808–820, 1996.CrossRefGoogle Scholar
  20. 20.
    Hsiao, I. L., and Y.-J. Huang. Titanium oxide shell coatings decrease the cytotoxicity of ZnO nanoparticles. Chem. Res. Toxicol. 24:303–313, 2011.CrossRefGoogle Scholar
  21. 21.
    Huang, C.-C., R. S. Aronstam, D.-R. Chen, and Y.-W. Huang. Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol. In Vitro 24:45–55, 2010.CrossRefGoogle Scholar
  22. 22.
    Huang, J. Y., H. Deng, X. L. Peng, S. S. Li, C. Y. Xiong, and J. Fang. Cellular traction force reconstruction based on a self-adaptive filtering scheme. Cell. Mol. Bioeng. 5:205–216, 2012.CrossRefGoogle Scholar
  23. 23.
    Huang, J. Y., X. C. Pan, X. L. Peng, T. Zhu, L. Qin, C. Y. Xiong, and J. Fang. High-efficiency cell-substrate displacement acquisition via digital image correlation method using basis functions. Opt. Laser Eng. 48:1058–1066, 2010.CrossRefGoogle Scholar
  24. 24.
    Huang, J. Y., L. Qin, X. L. Peng, T. Zhu, C. Y. Xiong, Y. Y. Zhang, and J. Fang. Cellular traction force recovery: an optimal filtering approach in two-dimensional Fourier space. J. Theor. Biol. 259:811–819, 2009.CrossRefGoogle Scholar
  25. 25.
    Ivask, A., K. Juganson, O. Bondarenko, M. Mortimer, V. Aruoja, K. Kasemets, I. Blinova, M. Heinlaan, V. Slaveykova, and A. Kahru. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: a comparative review. Nanotoxicology 8:57–71, 2014.CrossRefGoogle Scholar
  26. 26.
    Lewinski, N., V. Colvin, and R. Drezek. Cytotoxicity of nanoparticles. Small 4:26–49, 2008.CrossRefGoogle Scholar
  27. 27.
    Li, Y., Y. Zhang, and B. Yan. Nanotoxicity overview: nano-threat to susceptible populations. Int. J. Mol. Sci. 15:3671–3697, 2014.CrossRefGoogle Scholar
  28. 28.
    Lin, F., A. J. Song, J. M. Wu, X. M. Jiang, J. Y. Long, J. Chen, Y. Y. Duan, Y. L. Shi, and L. H. Deng. ADAM33 protein expression and the mechanics of airway smooth muscle cells are highly correlated in ovalbumin-sensitized rats. Mol. Med. Rep. 8:1209–1215, 2013.CrossRefGoogle Scholar
  29. 29.
    Lin, F., H. Zhang, J. Huang, and C. Xiong. Substrate stiffness coupling TGF-β1 modulates migration and traction force of MDA-MB-231 human breast cancer cells in vitro. ACS Biomater. Sci. Eng. 4:1337–1345, 2018.CrossRefGoogle Scholar
  30. 30.
    Miroshnikova, Y. A., H. Q. Le, D. Schneider, T. Thalheim, M. Rubsam, N. Bremicker, J. Polleux, N. Kamprad, M. Tarantola, I. Wang, M. Balland, C. M. Niessen, J. Galle, and S. A. Wickstrom. Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. Nat. Cell Biol. 20:69–80, 2018.CrossRefGoogle Scholar
  31. 31.
    Monopoli, M. P., C. Aberg, A. Salvati, and K. A. Dawson. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7:779–786, 2012.CrossRefGoogle Scholar
  32. 32.
    Poellmann, M. J., J. B. Estrada, T. Boudou, Z. T. Berent, C. Franck, and A. J. W. Johnson. Differences in morphology and traction generation of cell lines representing different stages of osteogenesis. J. Biomech. Eng. 137(12):124503, 2015.CrossRefGoogle Scholar
  33. 33.
    Pope, C. A., M. Ezzati, and D. W. Dockery. Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med. 360:376–386, 2009.CrossRefGoogle Scholar
  34. 34.
    Qin, L., J. Y. Huang, C. Y. Xiong, Y. Y. Zhang, and J. Fang. Dynamical stress characterization and energy evaluation of single cardiac myocyte actuating on flexible substrate. Biochem. Biophys. Res. Commun. 360:352–356, 2007.CrossRefGoogle Scholar
  35. 35.
    Ramirez-Lee, M. A., H. Rosas-Hernandez, S. Salazar-Garcia, J. M. Gutierrez-Hernandez, R. Espinosa-Tanguma, F. J. Gonzalez, S. F. Ali, and C. Gonzalez. Silver nanoparticles induce anti-proliferative effects on airway smooth muscle cells. Role of nitric oxide and muscarinic receptor signaling pathway. Toxicol. Lett. 224:246–256, 2014.CrossRefGoogle Scholar
  36. 36.
    Rape, A., W. H. Guo, and Y. L. Wang. Microtubule depolymerization induces traction force increase through two distinct pathways. J. Cell Sci. 124:4233–4240, 2011.CrossRefGoogle Scholar
  37. 37.
    Sayes, C. M., K. L. Reed, and D. B. Warheit. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol. Sci. 97:163–180, 2007.CrossRefGoogle Scholar
  38. 38.
    Setyawati, M. I., C. Y. Tay, S. L. Chia, S. L. Goh, W. Fang, M. J. Neo, H. C. Chong, S. M. Tan, S. C. J. Loo, K. W. Ng, J. P. Xie, C. N. Ong, N. S. Tan, and D. T. Leong. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun. 4:1673, 2013.CrossRefGoogle Scholar
  39. 39.
    Sniadecki, N. J., A. Anguelouch, M. T. Yang, C. M. Lamb, Z. Liu, S. B. Kirschner, Y. Liu, D. H. Reich, and C. S. Chen. Magnetic microposts as an approach to apply forces to living cells. Proc. Natl. Acad. Sci. U.S.A. 104:14553–14558, 2007.CrossRefGoogle Scholar
  40. 40.
    Song, A. J., F. Lin, J. M. Li, Q. F. Liao, E. M. Liu, X. M. Jiang, and L. H. Deng. Bisulfite and sulfite as derivatives of sulfur dioxide alters biomechanical behaviors of airway smooth muscle cells in culture. Inhal. Toxicol. 26:166–174, 2014.CrossRefGoogle Scholar
  41. 41.
    Stamenovic, D., S. M. Mijailovich, I. M. Tolic-Norrelykke, J. Chen, and N. Wang. Cell prestress. II. Contribution of microtubules. Am. J. Physiol. Cell Physiol. 282:C617–C624, 2002.CrossRefGoogle Scholar
  42. 42.
    Tay, C. Y., P. Cai, M. I. Setyawati, W. Fang, L. P. Tan, C. H. Hong, X. Chen, and D. T. Leong. Nanoparticles strengthen intracellular tension and retard cellular migration. Nano Lett. 14:83–88, 2014.CrossRefGoogle Scholar
  43. 43.
    Tay, C. Y., C. G. Koh, N. S. Tan, D. T. Leong, and L. P. Tan. Mechanoregulation of stem cell fate via micro-/nano-scale manipulation for regenerative medicine. Nanomedicine 8:623–638, 2013.CrossRefGoogle Scholar
  44. 44.
    Tolic-Norrelykke, I. M., J. P. Butler, J. X. Chen, and N. Wang. Spatial and temporal traction response in human airway smooth muscle cells. Am. J. Physiol. 283:C1254–C1266, 2002.CrossRefGoogle Scholar
  45. 45.
    Trepat, X., L. H. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg. Universal physical responses to stretch in the living cell. Nature 447:592–595, 2007.CrossRefGoogle Scholar
  46. 46.
    Vandebriel, R. J., and W. H. De Jong. A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol. Sci. Appl. 5:61–71, 2012.CrossRefGoogle Scholar
  47. 47.
    Wang, Y., W. G. Aker, H.-M. Hwang, C. G. Yedjou, H. Yu, and P. B. Tchounwou. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Sci. Total Environ. 409:4753–4762, 2011.CrossRefGoogle Scholar
  48. 48.
    Wang, N., I. M. Tolic-Norrelykke, J. X. Chen, S. M. Mijailovich, J. P. Butler, J. J. Fredberg, and D. Stamenovic. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am. J. Physiol. 282:C606–C616, 2002.CrossRefGoogle Scholar
  49. 49.
    Yu, L. E., L. Y. L. Yung, C. N. Ong, Y. L. Tan, K. S. Balasubramaniam, D. Hartono, G. H. Shui, M. R. Wenk, and W. Y. Ong. Translocation and effects of gold nanoparticles after inhalation exposure in rats. Nanotoxicology 1:235–242, 2007.CrossRefGoogle Scholar
  50. 50.
    Yuan, Y., J. Y. Huang, J. Fang, F. Yuan, and C. Y. Xiong. A self-adaptive sampling digital image correlation algorithm for accurate displacement measurement. Opt. Laser Eng. 65:57–63, 2015.CrossRefGoogle Scholar
  51. 51.
    Zarogiannis, S. G., A. S. Filippidis, S. Fernandez, A. Jurkuvenaite, N. Arnbalavanan, A. Stanishevsky, Y. K. Vohra, and S. Matalon. Nano-TiO2 particles impair adhesion of airway epithelial cells to fibronectin. Respir. Physiol. Neurobiol. 185:454–460, 2013.CrossRefGoogle Scholar
  52. 52.
    Zhang, W., and S. J. Gunst. Interactions of airway smooth muscle cells with their tissue matrix: implications for contraction. Proc. Am. Thorac. Soc. 5:32–39, 2008.CrossRefGoogle Scholar
  53. 53.
    Zhu, M. T., B. Wang, Y. Wang, L. Yuan, H. J. Wang, M. Wang, H. Ouyang, Z. F. Chai, W. Y. Feng, and Y. L. Zhao. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: risk factors for early atherosclerosis. Toxicol. Lett. 203:162–171, 2011.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Feng Lin
    • 1
  • Haihui Zhang
    • 2
  • Jianyong Huang
    • 1
  • Chunyang Xiong
    • 1
    • 2
    Email author
  1. 1.Department of Mechanics and Engineering Science, College of EngineeringPeking UniversityBeijingChina
  2. 2.Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina

Personalised recommendations