Advertisement

Annals of Biomedical Engineering

, Volume 46, Issue 10, pp 1568–1581 | Cite as

Neuromonitoring During Robotic Cochlear Implantation: Initial Clinical Experience

  • Juan Ansó
  • Olivier Scheidegger
  • Wilhelm Wimmer
  • Kate Gavaghan
  • Nicolas Gerber
  • Daniel Schneider
  • Jan Hermann
  • Christoph Rathgeb
  • Cilgia Dür
  • Kai Michael Rösler
  • Georgios Mantokoudis
  • Marco Caversaccio
  • Stefan Weber
Medical Robotics

Abstract

During robotic cochlear implantation a drill trajectory often passes at submillimeter distances from the facial nerve due to close lying critical anatomy of the temporal bone. Additional intraoperative safety mechanisms are thus required to ensure preservation of this vital structure in case of unexpected navigation system error. Electromyography based nerve monitoring is widely used to aid surgeons in localizing vital nerve structures at risk of injury during surgery. However, state of the art neuromonitoring systems, are unable to discriminate facial nerve proximity within submillimeter ranges. Previous work demonstrated the feasibility of utilizing combinations of monopolar and bipolar stimulation threshold measurements to discretize facial nerve proximity with greater sensitivity and specificity, enabling discrimination between safe (> 0.4 mm) and unsafe (< 0.1 mm) trajectories during robotic cochlear implantation (in vivo animal model). Herein, initial clinical validation of the determined stimulation protocol and nerve proximity analysis integrated into an image guided system for safety measurement is presented. Stimulation thresholds and corresponding nerve proximity values previously determined from an animal model have been validated in a first-in-man clinical trial of robotic cochlear implantation. Measurements performed automatically at preoperatively defined distances from the facial nerve were used to determine safety of the drill trajectory intraoperatively. The presented system and automated analysis correctly determined sufficient safety distance margins (> 0.4 mm) to the facial nerve in all cases.

Keywords

Image-guided Electromyography Facial nerve Stimulation Multipolar Bipolar Safety Submillimeter Accuracy 

Notes

Acknowledgments

The authors thank Laetitia Racz-Perroud, Fabian Zobrist and Marco Matulic (CAScination AG) for technical support. The authors thank Dr. Thilo Krüger and Celine Wegner (inomed GmbH) for technical support. Dr. Thomas Wyss-Balmer contributed with electrical modeling of the presented stimulation probe. Surgical photographs are attributed to Gianni Pauciello.

Conflict of interest

This work was supported by the Swiss Commission for technology and innovation (Project MIRACI 17618.1), the Swiss National Science Foundation (Project 205321_176007), by MED-EL GmbH (Innsbruck, Austria) and CAScination AG (Bern, Switzerland).

References

  1. 1.
    Anso, J., K. Gerber, S. Weber, K. Thorwarth, A. Chacko, and J. Patscheider. Intervention Device with Electrodes, P5324EP00, 2018.Google Scholar
  2. 2.
    Anso, J., et al. Electrical impedance to assess facial nerve proximity during robotic cochlear implantation. IEEE Trans. Biomed. Eng. 1–1, 2018.Google Scholar
  3. 3.
    Ansó, J., et al. A Neuromonitoring approach to facial nerve preservation during image-guided robotic cochlear implantation. Otol. Neurotol. 37(1):89–98, 2016.CrossRefGoogle Scholar
  4. 4.
    Ansó, J., et al. Feasibility of using EMG for early detection of the facial nerve during robotic direct cochlear access. Otol. Neurotol. 35(3):545–554, 2014.CrossRefGoogle Scholar
  5. 5.
    Balmer, T. W., et al. In-vivo electrical impedance measurement in mastoid bone. Ann. Biomed. Eng. 45(4):1122–1132, 2017.CrossRefGoogle Scholar
  6. 6.
    Bell, B., et al. In vitro accuracy evaluation of image-guided robot system for direct cochlear access. Otol. Neurotol. 34:1284–1290, 2013.CrossRefGoogle Scholar
  7. 7.
    Bernardeschi, D., et al. Continuous facial nerve stimulating burr for otologic surgeries. Otol. Neurotol. 32(8):1347–1351, 2011.CrossRefGoogle Scholar
  8. 8.
    Caversaccio, M., et al. Robotic cochlear implantation: surgical procedure and first clinical experience. Acta Otolaryngol. 137(4):447–454, 2017.CrossRefGoogle Scholar
  9. 9.
    Choung, Y. H., K. Park, M. J. Cho, P. H. Choung, Y. R. Shin, and H. Kahng. Systematic facial nerve monitoring in middle ear and mastoid surgeries: ‘surgical dehiscence’ and ‘electrical dehiscence’. Otolaryngoly 135(6):872–876, 2006.CrossRefGoogle Scholar
  10. 10.
    Gerber, N., B. Bell, K. Gavaghan, C. Weisstanner, M. D. Caversaccio, and S. Weber. Surgical planning tool for robotically assisted hearing aid implantation. Int. J. Comput. Assist. Radiol. Surg. 9(1):11–20, 2014.CrossRefGoogle Scholar
  11. 11.
    Gerber, N., et al. High accuracy patient-to-image registration for the facilitation of image guided robotic microsurgery on the head. IEEE Trans. Biomed. Eng. 60(4):960–968, 2013.CrossRefGoogle Scholar
  12. 12.
    Heman-Ackah, S. E., S. Gupta, and A. K. Lalwani. Is facial nerve integrity monitoring of value in chronic ear surgery? Laryngoscope 123(1):2–3, 2013.CrossRefGoogle Scholar
  13. 13.
    Holland, N. R. Intraoperative electromyography. J. Clin. Neurophysiol. 19(5):444–453, 2002.CrossRefGoogle Scholar
  14. 14.
    Hormes, J., and J. Chappuis. Monitoring of lumbosacral nerve roots during spinal instrumentation. Spine (Phila. Pa. 1976) 18(14):2059–2062, 1993.CrossRefGoogle Scholar
  15. 15.
    Kartush, J. M., J. K. Niparko, S. C. Bledsoe, M. D. Graham, and J. L. Kemink. Intraoperative facial nerve monitoring: a comparison of stimulating electrodes. Laryngoscope 95(12):1536–1540, 1985.CrossRefGoogle Scholar
  16. 16.
    Kim, S. M., S. H. Kim, D. W. Seo, and K. W. Lee. Intraoperative neurophysiologic monitoring: basic principles and recent update. J. Korean Med. Sci. 28(9):1261–1269, 2013.CrossRefGoogle Scholar
  17. 17.
    Labadie, R. F., J. H. Noble, B. M. Dawant, R. Balachandran, O. Majdani, and J. M. Fitzpatrick. Clinical validation of percutaneous cochlear implant surgery: initial report. Laryngoscope 118(6):1031–1039, 2008.CrossRefGoogle Scholar
  18. 18.
    Labadie, R. F., et al. Minimally invasive image-guided cochlear implantation surgery: first report of clinical implementation. Laryngoscope 124(8):1915–1922, 2014.CrossRefGoogle Scholar
  19. 19.
    Owen, J., et al. The use of mechanically elicited electromyograms to protect nerve roots during surgery for spinal degeneration. Spine (Phila. Pa. 1976) 19(15):1704–1710, 1994.CrossRefGoogle Scholar
  20. 20.
    Rathgeb, C., et al. The accuracy of image based safety analysis for robotic cochlear implantation. Int. J. Comput. Assist. Radiol. Surg. Google Scholar
  21. 21.
    Roland, A. P. S., C. Editor, and A. D. Meyers. Principles of Electrophysiologic Monitoring, pp. 1–9, 2012.Google Scholar
  22. 22.
    Ross, B. G., G. Fradet, and J. M. Nedzelski. Development of a sensitive clinical facial grading system. Otolaryngol. Head. Neck Surg. 114(3):380–386, 1996.CrossRefGoogle Scholar
  23. 23.
    Silverstein, H., and S. Rosenberg. Intraoperative facial nerve monitoring. Otolaryngol. Clin. N. Am. 24(3):709–725, 1991.Google Scholar
  24. 24.
    Vianna, M., et al. Differences in the diameter of facial nerve and facial canal in bell’s palsy—a 3-dimensional temporal bone study. Otol. Neurotol. 35(3):514–518, 2014.CrossRefGoogle Scholar
  25. 25.
    Weber, S., et al. Instrument flight to the inner ear. Sci. Robot. 2(4):eaal4916, 2017.CrossRefGoogle Scholar
  26. 26.
    Williamson, T., et al. Population statistics approach for safety assessment in robotic cochlear implantation. Otol. Neurotol. 38(5):759–764, 2017.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Juan Ansó
    • 1
  • Olivier Scheidegger
    • 2
  • Wilhelm Wimmer
    • 1
    • 3
  • Kate Gavaghan
    • 1
  • Nicolas Gerber
    • 1
  • Daniel Schneider
    • 1
  • Jan Hermann
    • 1
  • Christoph Rathgeb
    • 1
  • Cilgia Dür
    • 1
    • 3
  • Kai Michael Rösler
    • 2
  • Georgios Mantokoudis
    • 1
    • 3
  • Marco Caversaccio
    • 1
    • 3
  • Stefan Weber
    • 1
  1. 1.ARTORG Center for Biomedical EngineeringUniversity of BernBernSwitzerland
  2. 2.Department of Neurology, InselspitalUniversity of BernBernSwitzerland
  3. 3.Department of Head and Neck Surgery, InselspitalUniversity of BernBernSwitzerland

Personalised recommendations