Annals of Biomedical Engineering

, Volume 46, Issue 12, pp 2148–2161 | Cite as

A Numerical Preoperative Planning Model to Predict Arterial Deformations in Endovascular Aortic Aneurysm Repair

  • Hossein MohammadiEmail author
  • Simon Lessard
  • Eric Therasse
  • Rosaire Mongrain
  • Gilles Soulez


Endovascular aneurysm repair is rapidly emerging as the primary preferred method for treating abdominal aortic aneurysm. In this image-guided interventional procedure, to obtain the roadmap and decrease contrast injections, preoperative CT images are overlaid onto live fluoroscopy images using various 2D/3D image fusion techniques. However, the structural changes due to the insertion of stiff tools degrade the fusion accuracy. To correct the mismatch and quantify the intraoperative deformations, we present a patient-specific biomechanical model of the aorto-iliac structure and its surrounding tissues. The predictive capability of the model was evaluated against intraoperative data for a group of four patients. Incorporating the perivascular tissues into the model significantly improved the results and the mean distance between the real and simulated endovascular tools was 2.99 ± 1.78 mm on the ipsilateral side and 4.59 ± 3.25 mm on the contralateral side. Moreover, the distance between the deformed iliac ostia and their corresponding landmarks on intraoperative images was 2.99 ± 2.48 mm.


Endovascular aneurysm repair (EVAR) Endovascular navigation Image registration Patient-specific Simulation Surrounding tissues Intraoperative Preoperative 



We thank the FQRNT (Fonds de recherche du Québec – Nature et technologies). The research project were funded by the Nature Sciences and Engineering Research Council of Canada (NSERC) collaborative research and development grant, in partnership with Siemens Healthineers, CAE Healthcare, and the Medteq consortium.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Arnaoutakis, D. J., M. Zammert, A. Karthikesalingam, and M. Belkin. Endovascular repair of abdominal aortic aneurysms. Best Pract. Res. Clin. Anaesthesiol. 30:331–340, 2016.CrossRefGoogle Scholar
  2. 2.
    Bols, J., J. Degroote, B. Trachet, B. Verhegghe, P. Segers, and J. Vierendeels. A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels. J. Comput. Appl. Math. 246:10–17, 2013.CrossRefGoogle Scholar
  3. 3.
    Brown, L. C., E. A. Brown, R. M. Greenhalgh, J. T. Powell, and S. G. Thompson. Renal function and abdominal aortic aneurysm (AAA): the impact of different management strategies on long-term renal function in the UK EndoVascular Aneurysm Repair (EVAR) Trials. Ann. Surg. 251:966–975, 2010.CrossRefGoogle Scholar
  4. 4.
    Comley, K., and N. A. Fleck. A micromechanical model for the Young’s modulus of adipose tissue. Int. J. Solids Struct. 47:2982–2990, 2010.CrossRefGoogle Scholar
  5. 5.
    Dalstra, M., R. Huiskes, and L. Van Erning. Development and validation of a three-dimensional finite element model of the pelvic bone. J. Biomech. Eng 37:272–278, 1995.CrossRefGoogle Scholar
  6. 6.
    De Bock, S., F. Iannaccone, G. De Santis, M. De Beule, D. Van Loo, D. Devos, F. Vermassen, P. Segers, and B. Verhegghe. Virtual evaluation of stent graft deployment: a validated modeling and simulation study. J. Mech. Behav. Biomed. Mater. 13:129–139, 2012.CrossRefGoogle Scholar
  7. 7.
    Dubuisson M. P. and A. K. Jain. A modified Hausdorff distance for object matching. In: Proceedings of 12th International Conference on Pattern Recognition 1994, pp. 566–568 vol. 561.Google Scholar
  8. 8.
    Dumenil, A., A. Kaladji, M. Castro, S. Esneault, A. Lucas, M. Rochette, C. Göksu, and P. Haigron. Finite-element-based matching of pre-and intraoperative data for image-guided endovascular aneurysm repair. IEEE Trans. Biomed. Eng. 60:1353–1362, 2013.CrossRefGoogle Scholar
  9. 9.
    Fung, Y.-C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 2013.Google Scholar
  10. 10.
    Gasser, T. C., G. Görgülü, M. Folkesson, and J. Swedenborg. Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J. Vasc. Surg. 48:179–188, 2008.CrossRefGoogle Scholar
  11. 11.
    Gindre, J., A. Bel-Brunon, A. Kaladji, A. Duménil, M. Rochette, A. Lucas, P. Haigron, and A. Combescure. Finite element simulation of the insertion of guidewires during an EVAR procedure: example of a complex patient case, a first step toward patient-specific parameterized models. Int. J. Num. Methods Biomed. Eng. 31:e02716, 2015.CrossRefGoogle Scholar
  12. 12.
    Gindre, J., A. Bel-Brunon, M. Rochette, A. Lucas, A. Kaladji, P. Haigron, and A. Combescure. Patient-specific finite-element simulation of the insertion of guidewire during an EVAR procedure: guidewire position prediction validation on 28 cases. IEEE Trans. Biomed. Eng. 64:1057–1066, 2017.CrossRefGoogle Scholar
  13. 13.
    Gupta A., S. Sett, S. Varahoor and B. Wolf. Investigation of interaction between guidewire and native vessel using finite element analysis. In: Proceedings of the 2010 Simulia Customer Conference 2010Google Scholar
  14. 14.
    Hallquist, J. O. LS-DYNA Theory Manual. San Diego: Livermore Software Technology Corporation, pp. 25–31, 2006.Google Scholar
  15. 15.
    Joldes, G. R., K. Miller, A. Wittek, and B. Doyle. A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress. J. Mech. Behav. Biomed. Mater. 58:139–148, 2016.CrossRefGoogle Scholar
  16. 16.
    Kaladji, A., A. Dumenil, M. Castro, A. Cardon, J.-P. Becquemin, B. Bou-Saïd, A. Lucas, and P. Haigron. Prediction of deformations during endovascular aortic aneurysm repair using finite element simulation. Comput. Med. Imaging Graph. 37:142–149, 2013.CrossRefGoogle Scholar
  17. 17.
    Kauffmann, C., F. Douane, E. Therasse, S. Lessard, S. Elkouri, P. Gilbert, N. Beaudoin, M. Pfister, J. F. Blair, and G. Soulez. Source of errors and accuracy of a two-dimensional/three-dimensional fusion road map for endovascular aneurysm repair of abdominal aortic aneurysm. J. Vasc. Interv. Radiol. 26:544–551, 2015.CrossRefGoogle Scholar
  18. 18.
    Lessard, S., C. Kauffmann, M. Pfister, G. Cloutier, E. Therasse, J. A. de Guise, and G. Soulez. Automatic detection of selective arterial devices for advanced visualization during abdominal aortic aneurysm endovascular repair. Med. Eng. Phys. 37:979–986, 2015.CrossRefGoogle Scholar
  19. 19.
    Lim, J.-H., S.-H. Ong, and W. Xiong. Biomedical Image Understanding: Methods and Applications. New Jersey: Wiley, 2015.CrossRefGoogle Scholar
  20. 20.
    Liu, Y., C. Dang, M. Garcia, H. Gregersen, and G. S. Kassab. Surrounding tissues affect the passive mechanics of the vessel wall: theory and experiment. Am. J. Physiol. Heart Circ. Physiol. 293:H3290–H3300, 2007.CrossRefGoogle Scholar
  21. 21.
    Miao, C. Y., and Z. Y. Li. The role of perivascular adipose tissue in vascular smooth muscle cell growth. Br. J. Pharmacol. 165:643–658, 2012.CrossRefGoogle Scholar
  22. 22.
    Miller, K., and J. Lu. On the prospect of patient-specific biomechanics without patient-specific properties of tissues. J. Mech. Behav. Biomed. Mater. 27:154–166, 2013.CrossRefGoogle Scholar
  23. 23.
    Mohammadi, H., R. Cartier, and R. Mongrain. Review of numerical methods for simulation of the aortic root: present and future directions. Int. J. Comput. Methods Eng. Sci. Mech. 17:182–195, 2016.CrossRefGoogle Scholar
  24. 24.
    Mohammadi, H., R. Cartier, and R. Mongrain. Fiber-reinforced computational model of the aortic root incorporating thoracic aorta and coronary structures. Biomech. and Mode. Mechanobiol. 17:263–283, 2017.CrossRefGoogle Scholar
  25. 25.
    Mohammadi, H., R. Cartier, and R. Mongrain. 3D physiological model of the aortic valve incorporating small coronary arteries. Int. J. Num. Methods Biomed. Eng. 33:e2829, 2017.CrossRefGoogle Scholar
  26. 26.
    Moireau, P., N. Xiao, M. Astorino, C. A. Figueroa, D. Chapelle, C. Taylor, and J.-F. Gerbeau. External tissue support and fluid–structure simulation in blood flows. Biomech. Model. Mechanobiol. 11:1–18, 2012.CrossRefGoogle Scholar
  27. 27.
    Perrin, D., P. Badel, L. Orgeas, C. Geindreau, S. R. du Roscoat, J. N. Albertini, and S. Avril. Patient-specific simulation of endovascular repair surgery with tortuous aneurysms requiring flexible stent-grafts. J. Mech. Behav. Biomed. Mater. 63:86–99, 2016.CrossRefGoogle Scholar
  28. 28.
    Rafii-Tari, H., C. J. Payne, and G.-Z. Yang. Current and emerging robot-assisted endovascular catheterization technologies: a review. Ann. Biomed. Eng. 42:697–715, 2014.CrossRefGoogle Scholar
  29. 29.
    Raghavan, M. L., and D. A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33:475–482, 2000.CrossRefGoogle Scholar
  30. 30.
    Roy, D. Mechanical Simulation of the Endovascular Repair of Abdominal Aortic Aneurysms. Montréal: Université de Montréal, 2015.Google Scholar
  31. 31.
    Roy, D., G. A. Holzapfel, C. Kauffmann, and G. Soulez. Finite element analysis of abdominal aortic aneurysms: geometrical and structural reconstruction with application of an anisotropic material model. IMA J. Appl. Math. 79:1011–1026, 2014.CrossRefGoogle Scholar
  32. 32.
    Schröder, J. The mechanical properties of guidewires. Part I: Stiffness and torsional strength. Cardiovasc. Intervent. Radiol. 16:43–46, 1993.CrossRefGoogle Scholar
  33. 33.
    Sommer, G., M. Eder, L. Kovacs, H. Pathak, L. Bonitz, C. Mueller, P. Regitnig, and G. A. Holzapfel. Multiaxial mechanical properties and constitutive modeling of human adipose tissue: a basis for preoperative simulations in plastic and reconstructive surgery. Acta Biomater. 9:9036–9048, 2013.CrossRefGoogle Scholar
  34. 34.
    Toth D., M. Pfister, A. Maier, M. Kowarschik and J. Hornegger. Adaption of 3D Models to 2D X-Ray Images during Endovascular Abdominal Aneurysm Repair. In: Medical Image Computing and Computer-Assisted InterventionMICCAI 20152015, pp. 339–346Google Scholar
  35. 35.
    Yushkevich, P. A., J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, and G. Gerig. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128, 2006.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Hossein Mohammadi
    • 1
    • 2
    Email author
  • Simon Lessard
    • 1
  • Eric Therasse
    • 3
  • Rosaire Mongrain
    • 2
  • Gilles Soulez
    • 1
    • 3
  1. 1.Centre de recherche du centre hospitalier de l’Université de Montréal (CRCHUM)MontrealCanada
  2. 2.Mechanical Engineering DepartmentMcGill UniversityMontrealCanada
  3. 3.Department of Radiology Radiation-Oncology and Nuclear MedicineUniversité de MontréalMontrealCanada

Personalised recommendations