Advertisement

Annals of Biomedical Engineering

, Volume 46, Issue 11, pp 1921–1937 | Cite as

Qualitative and Quantitative Evaluation of a Novel Detergent-Based Method for Decellularization of Peripheral Nerves

  • Charlot Philips
  • Fernando Campos
  • Annelies Roosens
  • María del Carmen Sánchez-Quevedo
  • Heidi Declercq
  • Víctor Carriel
Article

Abstract

Tissue engineering is an emerging strategy for the development of nerve substitutes for peripheral nerve repair. Especially decellularized peripheral nerve allografts are interesting alternatives to replace the gold standard autografts. In this study, a novel decellularization protocol was qualitatively and quantitatively evaluated by histological, biochemical, ultrastructural and mechanical methods and compared to the protocol described by Sondell et al. and a modified version of the protocol described by Hudson et al. Decellularization by the method described by Sondell et al. resulted in a reduction of the cell content, but was accompanied by a loss of essential extracellular matrix (ECM) molecules such as laminin and glycosaminoglycans. This decellularization also caused disruption of the endoneurial tubes and an increased stiffness of the nerves. Decellularization by the adapted method of Hudson et al. did not alter the ECM composition of the nerves, but an efficient cell removal could not be obtained. Finally, decellularization by the method developed in our lab by Roosens et al. led to a successful removal of nuclear material, while maintaining the nerve ultrastructure and ECM composition. In addition, the resulting ECM scaffold was found to be cytocompatible, allowing attachment and proliferation of adipose-derived stem cells. These results show that our decellularization combining Triton X-100, DNase, RNase and trypsin created a promising scaffold for peripheral nerve regeneration.

Keywords

Peripheral nerve regeneration Decellularized nerve allografts Tissue engineering Detergents Extracellular matrix Biomechanics 

Notes

Acknowledgments

This study was supported by the Grant FIS PI14/1343 and FIS PI17/0393 of the Spanish Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica from the Ministerio de Economía y Competitividad, Instituto de Salud Carlos III (co-financed by FEDER funds, European Union) and by the Special Research Fund (BOF 14/IOP/045) from Ghent University, Belgium. The authors would like to thank Dr. Víctor Domingo Roa, Amalia de la Rosa and Concepción Villegas (Experimental Unit of the University Hospital Virgen de las Nieves, Granada) for their assistance with the laboratory animals, Leen Pieters (Ghent University) for the technical assistance with the TEM and Lisa Van Vlaenderen (Ghent University) for the assistance with the ex vivo cytocompatibility.

References

  1. 1.
    Brooks, D. N., R. V. Weber, J. D. Chao, B. D. Rinker, J. Zoldos, M. R. Robichaux, S. B. Ruggeri, K. A. Anderson, E. E. Bonatz, S. M. Wisotsky, M. S. Cho, C. Wilson, E. O. Cooper, J. V. Ingari, B. Safa, B. M. Parrett, and G. M. Buncke. Processed nerve allografts for peripheral nerve reconstruction: a multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery 32:1–14, 2012.CrossRefPubMedGoogle Scholar
  2. 2.
    Bueno, F. R., and S. B. Shah. Implications of tensile loading for the tissue engineering of nerves. Tissue Eng. Part B 14:219–233, 2008.CrossRefGoogle Scholar
  3. 3.
    Campos, F., A. B. Bonhome-Espinosa, L. Garcia-Martinez, J. D. Duran, M. T. Lopez-Lopez, M. Alaminos, M. C. Sanchez-Quevedo, and V. Carriel. Ex vivo characterization of a novel tissue-like cross-linked fibrin-agarose hydrogel for tissue engineering applications. Biomed. Mater. 11:055004, 2016.CrossRefPubMedGoogle Scholar
  4. 4.
    Campos, F., A. B. Bonhome-Espinosa, G. Vizcaino, I. A. Rodriguez, D. Duran-Herrera, M. T. Lopez-Lopez, I. Sanchez-Montesinos, M. Alaminos, M. C. Sanchez-Quevedo, and V. Carriel. Generation of genipin cross-linked fibrin-agarose hydrogel tissue-like models for tissue engineering applications. Biomed. Mater. 13:025021, 2018.CrossRefPubMedGoogle Scholar
  5. 5.
    Carbonetto, S., D. Evans, and P. Cochard. Nerve fiber growth in culture on tissue substrata from central and peripheral nervous systems. J. Neurosci. 7:610–620, 1987.CrossRefPubMedGoogle Scholar
  6. 6.
    Carriel, V., M. Alaminos, I. Garzon, A. Campos, and M. Cornelissen. Tissue engineering of the peripheral nervous system. Expert Rev. Neurother. 14:301–318, 2014.CrossRefPubMedGoogle Scholar
  7. 7.
    Carriel, V. S., J. Aneiros-Fernandez, S. Arias-Santiago, I. J. Garzon, M. Alaminos, and A. Campos. A novel histochemical method for a simultaneous staining of melanin and collagen fibers. J. Histochem. Cytochem. 59:270–277, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Carriel, V., A. Campos, M. Alaminos, S. Raimondo, and S. Geuna. Staining methods for normal and regenerative myelin in the nervous system. Methods Mol. Biol. 1560:207–218, 2017.CrossRefPubMedGoogle Scholar
  9. 9.
    Carriel, V., F. Campos, J. Aneiros-Fernandez, and J. A. Kiernan. Tissue Fixation and Processing for the Histological Identification of Lipids. Methods Mol. Biol. 1560:197–206, 2017.CrossRefPubMedGoogle Scholar
  10. 10.
    Carriel, V., J. Garrido-Gomez, P. Hernandez-Cortes, I. Garzon, S. Garcia-Garcia, J. A. Saez-Moreno, M. Del Carmen Sanchez-Quevedo, A. Campos, and M. Alaminos. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration. J. Neural Eng. 10:026022, 2013.CrossRefPubMedGoogle Scholar
  11. 11.
    Carriel, V., I. Garzon, M. Alaminos, and A. Campos. Evaluation of myelin sheath and collagen reorganization pattern in a model of peripheral nerve regeneration using an integrated histochemical approach. Histochem. Cell Biol. 136:709–717, 2011.CrossRefPubMedGoogle Scholar
  12. 12.
    Carriel, V., I. Garzon, A. Campos, M. Cornelissen, and M. Alaminos. Differential expression of GAP-43 and neurofilament during peripheral nerve regeneration through bio-artificial conduits. J Tissue Eng Regen. Med. 11:553–563, 2014.CrossRefPubMedGoogle Scholar
  13. 13.
    Carriel, V., G. Scionti, F. Campos, O. Roda, B. Castro, M. Cornelissen, I. Garzon, and M. Alaminos. In vitro characterization of a nanostructured fibrin agarose bio-artificial nerve substitute. J. Tissue Eng. Regen. Med. 11:1412–1426, 2017.CrossRefPubMedGoogle Scholar
  14. 14.
    Cebotari, S., I. Tudorache, T. Jaekel, A. Hilfiker, S. Dorfman, W. Ternes, A. Haverich, and A. Lichtenberg. Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells. Artif. Organs 34:206–210, 2010.CrossRefPubMedGoogle Scholar
  15. 15.
    Chernousov, M. A., W. M. Yu, Z. L. Chen, D. J. Carey, and S. Strickland. Regulation of Schwann cell function by the extracellular matrix. Glia 56:1498–1507, 2008.CrossRefPubMedGoogle Scholar
  16. 16.
    Crapo, P. M., T. W. Gilbert, and S. F. Badylak. An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dahlin, L. B. Techniques of peripheral nerve repair. Scand. J. Surg. 97:310–316, 2008.CrossRefPubMedGoogle Scholar
  18. 18.
    Daly, W., L. Yao, D. Zeugolis, A. Windebank, and A. Pandit. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J. R. Soc. Interface 9:202–221, 2012.CrossRefPubMedGoogle Scholar
  19. 19.
    Díaz-Moreno, E., D. Durand-Herrera, V. Carriel, M.-Á. Martín-Piedra, M. D. C. Sánchez-Quevedo, I. Garzón, A. Campos, R. Fernández-Valadés, and M. Alaminos. Evaluation of freeze-drying and cryopreservation protocols for long-term storage of biomaterials based on decellularized intestine. J. Biomed. Mater. Res. Part B 106:488–500, 2018.CrossRefGoogle Scholar
  20. 20.
    Evans, P. J., S. E. Mackinnon, A. D. Levi, J. A. Wade, D. A. Hunter, Y. Nakao, and R. Midha. Cold preserved nerve allografts: changes in basement membrane, viability, immunogenicity, and regeneration. Muscle Nerve 21:1507–1522, 1998.CrossRefPubMedGoogle Scholar
  21. 21.
    Garcia-Martinez, L., F. Campos, C. Godoy-Guzman, M. Del Carmen Sanchez-Quevedo, I. Garzon, M. Alaminos, A. Campos, and V. Carriel. Encapsulation of human elastic cartilage-derived chondrocytes in nanostructured fibrin-agarose hydrogels. Histochem. Cell Biol. 147:83–95, 2017.CrossRefPubMedGoogle Scholar
  22. 22.
    Gulati, A. K. Evaluation of acellular and cellular nerve grafts in repair of rat peripheral nerve. J. Neurosurg. 68:117–123, 1988.CrossRefPubMedGoogle Scholar
  23. 23.
    Haastert-Talini, K., S. Geuna, L. B. Dahlin, C. Meyer, L. Stenberg, T. Freier, C. Heimann, C. Barwig, L. F. Pinto, S. Raimondo, G. Gambarotta, S. R. Samy, N. Sousa, A. J. Salgado, A. Ratzka, S. Wrobel, and C. Grothe. Chitosan tubes of varying degrees of acetylation for bridging peripheral nerve defects. Biomaterials 34:9886–9904, 2013.CrossRefPubMedGoogle Scholar
  24. 24.
    Hess, J. R., M. J. Brenner, I. K. Fox, C. M. Nichols, T. M. Myckatyn, D. A. Hunter, S. R. Rickman, and S. E. Mackinnon. Use of cold-preserved allografts seeded with autologous Schwann cells in the treatment of a long-gap peripheral nerve injury. Plast. Reconstr. Surg. 119:246–259, 2007.CrossRefPubMedGoogle Scholar
  25. 25.
    Hudson, T. W., S. Y. Liu, and C. E. Schmidt. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng. 10:1346–1358, 2004.CrossRefPubMedGoogle Scholar
  26. 26.
    Ide, C., T. Osawa, and K. Tohyama. Nerve regeneration through allogeneic nerve grafts, with special reference to the role of the Schwann cell basal lamina. Prog. Neurobiol. 34:1–38, 1990.CrossRefPubMedGoogle Scholar
  27. 27.
    Ide, C., K. Tohyama, R. Yokota, T. Nitatori, and S. Onodera. Schwann cell basal lamina and nerve regeneration. Brain Res. 288:61–75, 1983.CrossRefPubMedGoogle Scholar
  28. 28.
    Kehoe, S., X. F. Zhang, and D. Boyd. FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury 43:553–572, 2012.CrossRefPubMedGoogle Scholar
  29. 29.
    Kvist, M., M. Sondell, M. Kanje, and L. B. Dahlin. Regeneration in, and properties of, extracted peripheral nerve allografts and xenografts. J. Plast. Surg. Hand. Surg. 45:122–128, 2011.CrossRefPubMedGoogle Scholar
  30. 30.
    Meek, M. F., and J. H. Coert. US Food and Drug Administration/Conformit Europe-approved absorbable nerve conduits for clinical repair of peripheral and cranial nerves. Ann. Plast. Surg. 60:466–472, 2008.CrossRefPubMedGoogle Scholar
  31. 31.
    Moore, A. M., R. Kasukurthi, C. K. Magill, H. F. Farhadi, G. H. Borschel, and S. E. Mackinnon. Limitations of conduits in peripheral nerve repairs. Hand 4:180–186, 2009.CrossRefPubMedGoogle Scholar
  32. 32.
    Moore, A. M., M. MacEwan, K. B. Santosa, K. E. Chenard, W. Z. Ray, D. A. Hunter, S. E. Mackinnon, and P. J. Johnson. Acellular nerve allografts in peripheral nerve regeneration: a comparative study. Muscle Nerve 44:221–234, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Muir D. F. Method for decellularization of tissue grafts. Google Patents, 2014.Google Scholar
  34. 34.
    Noble, J., C. A. Munro, V. S. Prasad, and R. Midha. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J. Trauma 45:116–122, 1998.CrossRefPubMedGoogle Scholar
  35. 35.
    Oliveira, A. C., I. Garzon, A. M. Ionescu, V. Carriel, J. Cardona, M. Gonzalez-Andrades, M. del Perez, M. Alaminos, and A. Campos. Evaluation of small intestine grafts decellularization methods for corneal tissue engineering. PLoS ONE 8:e66538, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Philips, C., R. Cornelissen, and V. Carriel. Evaluation methods as quality control in the generation of decellularized peripheral nerve allografts. J. Neural Eng. 15:021003, 2018.CrossRefPubMedGoogle Scholar
  37. 37.
    Roosens, A., P. Somers, F. De Somer, V. Carriel, G. Van Nooten, and R. Cornelissen. Impact of detergent-based decellularization methods on porcine tissues for heart valve engineering. Ann. Biomed. Eng. 44:2827–2839, 2016.CrossRefPubMedGoogle Scholar
  38. 38.
    Sandrock, Jr., A. W., and W. D. Matthew. Identification of a peripheral nerve neurite growth-promoting activity by development and use of an in vitro bioassay. Proc. Natl. Acad. Sci. USA 84:6934–6938, 1987.CrossRefPubMedGoogle Scholar
  39. 39.
    Siemionow, M., and G. Brzezicki. Chapter 8 current techniques and concepts in peripheral nerve repair. In: International Review of Neurobiology, edited by S. Geuna, P. Tos, and B. Battiston. Cambridge: Academic Press, 2009, pp. 141–172.Google Scholar
  40. 40.
    Sondell, M., G. Lundborg, and M. Kanje. Regeneration of the rat sciatic nerve into allografts made acellular through chemical extraction. Brain Res. 795:44–54, 1998.CrossRefPubMedGoogle Scholar
  41. 41.
    Sridharan, R., R. B. Reilly, and C. T. Buckley. Decellularized grafts with axially aligned channels for peripheral nerve regeneration. J. Mech. Behav. Biomed. Mater. 41:124–135, 2015.CrossRefPubMedGoogle Scholar
  42. 42.
    Stocum, D. L. Regenerative Biology and Medicine. Boston: Elsevier Academic Press, 2006.CrossRefGoogle Scholar
  43. 43.
    Walsh, S., J. Biernaskie, S. W. Kemp, and R. Midha. Supplementation of acellular nerve grafts with skin derived precursor cells promotes peripheral nerve regeneration. Neuroscience 164:1097–1107, 2009.CrossRefPubMedGoogle Scholar
  44. 44.
    Wang, Q., C. Zhang, L. Zhang, W. Guo, G. Feng, S. Zhou, Y. Zhang, T. Tian, Z. Li, and F. Huang. The preparation and comparison of decellularized nerve scaffold of tissue engineering. J. Biomed. Mater. Res. A 102:4301–4308, 2014.PubMedGoogle Scholar
  45. 45.
    Whitlock, E. L., S. H. Tuffaha, J. P. Luciano, Y. Yan, D. A. Hunter, C. K. Magill, A. M. Moore, A. Y. Tong, S. E. Mackinnon, and G. H. Borschel. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve 39:787–799, 2009.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhao, Z., Y. Wang, J. Peng, Z. Ren, L. Zhang, Q. Guo, W. Xu, and S. Lu. Improvement in nerve regeneration through a decellularized nerve graft by supplementation with bone marrow stromal cells in fibrin. Cell Transplant. 23:97–110, 2014.CrossRefPubMedGoogle Scholar
  47. 47.
    Zilic, L., S. P. Wilshaw, and J. W. Haycock. Decellularisation and histological characterisation of porcine peripheral nerves. Biotechnol. Bioeng. 113:2041–2053, 2016.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Tissue Engineering and Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
  2. 2.Tissue Engineering Group, Department of Histology, Faculty of MedicineUniversity of GranadaGranadaSpain
  3. 3.Instituto de Investigación Biosanitaria, Ibs.GRANADAGranadaSpain

Personalised recommendations