Advertisement

Annals of Biomedical Engineering

, Volume 46, Issue 11, pp 1830–1843 | Cite as

Trunk Hybrid Passive–Active Musculoskeletal Modeling to Determine the Detailed T12–S1 Response Under In Vivo Loads

  • P. Khoddam-Khorasani
  • N. Arjmand
  • A. Shirazi-Adl
Article
  • 132 Downloads

Abstract

Biomechanical models of the spine either simplify intervertebral joints (using spherical joints or deformable beams) in musculoskeletal (MS) or overlook musculature in geometrically-detailed passive finite element (FE) models. These distinct active and passive models therefore fail to determine in vivo stresses and strains within and load-sharing among the joint structures (discs, ligaments, and facets). A novel hybrid active–passive spine model is therefore developed in which estimated trunk muscle forces from a MS model for in vivo activities drive a mechanically-equivalent passive FE model to quantify in vivo T12–S1 compression/shear loads, intradiscal pressures (IDP), centers of rotation (CoR), ligament/facet forces, and annulus fiber strains. The predicted and in vivo L4–L5 IDP and L1–S1 CoRs showed satisfactory agreements. The FE model under commonly-used in vitro loading (pure moments and follower loads) predicted different kinetics from those of the hybrid model under in vivo loads (muscle exertions and gravity loads) contributing to suggest the inadequacy of such in vitro loads when simulating in vivo tasks. For an improved assessment of the injury risk, evaluation of the internal loads, and design of implants, such hybrid models should therefore be used.

Keywords

Spine Finite element Musculoskeletal Model Disc fiber strain Center of rotation Intradiscal pressure Muscles Facets Ligaments 

Notes

Acknowledgments

This work was supported by grants from Sharif University of Technology (Tehran, Iran). Assistance of Mr. H. Asadi and Dr. S. Naserkhaki in the finite element modeling and Mr. A.H. Eskandari in the musculoskeletal modeling is greatly appreciated.

Supplementary material

10439_2018_2078_MOESM1_ESM.docx (32 kb)
Supplementary material 1 (DOCX 32 kb)

References

  1. 1.
    Adams, M., and W. Hutton. Prolapsed intervertebral disc: a hyperflexion injury. Spine 7:184–191, 1982.CrossRefGoogle Scholar
  2. 2.
    Akhavanfar, M., H. Kazemi, A. Eskandari, and N. Arjmand. Obesity and spinal loads: a combined MR imaging and subject-specific modeling investigation. J. Biomech. 70:102–112, 2018.CrossRefGoogle Scholar
  3. 3.
    Arjmand, N., D. Gagnon, A. Plamondon, A. Shirazi-Adl, and C. Lariviere. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models. Clin. Biomech. 24:533–541, 2009.CrossRefGoogle Scholar
  4. 4.
    Arjmand, N., D. Gagnon, A. Plamondon, A. Shirazi-Adl, and C. Lariviere. A comparative study of two trunk biomechanical models under symmetric and asymmetric loadings. J. Biomech. 43:485–491, 2010.CrossRefGoogle Scholar
  5. 5.
    Arjmand N. Computational biomechanics of the human spine in static lifting tasks. PhD Thesis, Ecole Polytechnique de Montreal, pp. 218-220, 2006.Google Scholar
  6. 6.
    Arjmand, N., and A. Shirazi-Adl. Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions. J. Biomech. 39:510–521, 2006.CrossRefGoogle Scholar
  7. 7.
    Arjmand, N., and A. Shirazi-Adl. Sensitivity of kinematics-based model predictions to optimization criteria in static lifting tasks. Med. Eng. Phys. 28:504–514, 2006.CrossRefGoogle Scholar
  8. 8.
    Arjmand, N., A. Shirazi-Adl, and B. Bazrgari. Wrapping of trunk thoracic extensor muscles influences muscle forces and spinal loads in lifting tasks. Clin. Biomech. 21:668–675, 2006.CrossRefGoogle Scholar
  9. 9.
    Azari, F., N. Arjmand, A. Shirazi-Adl, and T. Rahimi-Moghaddam. A combined passive and active musculoskeletal model study to estimate L4–L5 load sharing. J. Biomech. 70:157–165, 2018.CrossRefGoogle Scholar
  10. 10.
    Bashkuev, M., P.-P. A. Vergroesen, M. Dreischarf, C. Schilling, A. J. van der Veen, H. Schmidt, and I. Kingma. Intradiscal pressure measurements: a challenge or a routine? J. Biomech. 49:864–868, 2016.CrossRefGoogle Scholar
  11. 11.
    Bassani, T., E. Stucovitz, Z. Qian, M. Briguglio, and F. Galbusera. Validation of the AnyBody full body musculoskeletal model in computing lumbar spine loads at L4L5 level. J. Biomech. 58:89–96, 2017.CrossRefGoogle Scholar
  12. 12.
    Breau, C., A. Shirazi-Adl, and J. De Guise. Reconstruction of a human ligamentous lumbar spine using CT images—a three-dimensional finite element mesh generation. Ann. Biomed. Eng. 19:291–302, 1991.CrossRefGoogle Scholar
  13. 13.
    Brinckmann, P., and H. Grootenboer. Change of disc height, radial disc bulge, and intradiscal pressure from discectomy an in vitro investigation on human lumbar discs. Spine 16:641–646, 1991.CrossRefGoogle Scholar
  14. 14.
    Bruno, A. G., M. L. Bouxsein, and D. E. Anderson. Development and validation of a musculoskeletal model of the fully articulated thoracolumbar spine and rib cage. J. Biomech. Eng. 137:081003, 2015.CrossRefGoogle Scholar
  15. 15.
    Chen, C.-S., C.-K. Cheng, C.-L. Liu, and W.-H. Lo. Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med. Eng. Phys. 23:485–493, 2001.CrossRefGoogle Scholar
  16. 16.
    Cholewicki, J., and S. M. McGill. Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain. Clin. Biomech. 11:1–15, 1996.CrossRefGoogle Scholar
  17. 17.
    Damsgaard, M., J. Rasmussen, S. T. Christensen, E. Surma, and M. de Zee. Analysis of musculoskeletal systems in the anybody modeling system. Simul. Model. Pract. Theory 14:1100–1111, 2006.CrossRefGoogle Scholar
  18. 18.
    Dittmar, R., M. M. van Rijsbergen, and K. Ito. Moderately degenerated human intervertebral disks exhibit a less geometrically specific collagen fiber orientation distribution. Global Spine J 6:439–446, 2016.CrossRefGoogle Scholar
  19. 19.
    Dreischarf, M., A. Rohlmann, G. Bergmann, and T. Zander. Optimised loads for the simulation of axial rotation in the lumbar spine. J. Biomech. 44:2323–2327, 2011.CrossRefGoogle Scholar
  20. 20.
    Dreischarf, M., A. Rohlmann, G. Bergmann, and T. Zander. Optimised in vitro applicable loads for the simulation of lateral bending in the lumbar spine. Med. Eng. Phys. 34:777–780, 2012.CrossRefGoogle Scholar
  21. 21.
    Dreischarf, M., A. Shirazi-Adl, N. Arjmand, A. Rohlmann, and H. Schmidt. Estimation of loads on human lumbar spine: a review of in vivo and computational model studies. J. Biomech. 49:833–845, 2016.CrossRefGoogle Scholar
  22. 22.
    Dreischarf, M., T. Zander, A. Shirazi-Adl, C. Puttlitz, C. Adam, C. Chen, V. Goel, A. Kiapour, Y. Kim, and K. Labus. Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together. J. Biomech. 47(8):1757–1766, 2014.CrossRefGoogle Scholar
  23. 23.
    Ghezelbash, F., A. Eskandari, A. Shirazi-Adl, N. Arjmand, Z. El-Ouaaid, and A. Plamondon. Effects of motion segment simulation and joint positioning on spinal loads in trunk musculoskeletal models. J. Biomech. 70:149–156, 2018.CrossRefGoogle Scholar
  24. 24.
    Ghezelbash, F., A. Shirazi-Adl, N. Arjmand, Z. El-Ouaaid, and A. Plamondon. Subject-specific biomechanics of trunk: musculoskeletal scaling, internal loads and intradiscal pressure estimation. Biomech. Model. Mechanobiol. 15:1699–1712, 2016.CrossRefGoogle Scholar
  25. 25.
    Hajihosseinali, M., N. Arjmand, A. Shirazi-Adl, F. Farahmand, and M. Ghiasi. A novel stability and kinematics-driven trunk biomechanical model to estimate muscle and spinal forces. Med. Eng. Phys. 36:1296–1304, 2014.CrossRefGoogle Scholar
  26. 26.
    Han, K.-S., A. Rohlmann, S.-J. Yang, B. S. Kim, and T.-H. Lim. Spinal muscles can create compressive follower loads in the lumbar spine in a neutral standing posture. Med. Eng. Phys. 33:472–478, 2011.CrossRefGoogle Scholar
  27. 27.
    Heuer, F., H. Schmidt, L. Claes, and H.-J. Wilke. Stepwise reduction of functional spinal structures increase vertebral translation and intradiscal pressure. J. Biomech. 40:795–803, 2007.CrossRefGoogle Scholar
  28. 28.
    Holzapfel, G. A., C. Schulze-Bauer, G. Feigl, and P. Regitnig. Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech. Model. Mechanobiol. 3:125–140, 2005.CrossRefGoogle Scholar
  29. 29.
    Ignasiak, D., S. J. Ferguson, and N. Arjmand. A rigid thorax assumption affects model loading predictions at the upper but not lower lumbar levels. J. Biomech. 49:3074–3078, 2016.CrossRefGoogle Scholar
  30. 30.
    Kim, K., Y. H. Kim, and S. Lee. Investigation of optimal follower load path generated by trunk muscle coordination. J. Biomech. 44:1614–1617, 2011.CrossRefGoogle Scholar
  31. 31.
    Little, J. P. Finite element modelling of anular lesions in the lumbar intervertebral disc. Brisbane: Queensland University of Technology, 2004.Google Scholar
  32. 32.
    Nachemson, A. Towards a better understanding of low-back pain: a review of the mechanics of the lumbar disc. Rheumatology 14:129–143, 1975.CrossRefGoogle Scholar
  33. 33.
    Nachemson, A. L. Disc pressure measurements. Spine 6:93–97, 1981.CrossRefGoogle Scholar
  34. 34.
    Nachemson, A., and G. Elfstrom. Intravital dynamic pressure measurements in lumbar discs. Scand J Rehabil 2:1–40, 1970.Google Scholar
  35. 35.
    Nachemson, A., and J. M. Morris. In vivo measurements of intradiscal pressure. J. Bone Joint Surg. 46:1077–1092, 1964.CrossRefGoogle Scholar
  36. 36.
    Naserkhaki, S., N. Arjmand, A. Shirazi-Adl, F. Farahmand, and M. El-Rich. Effects of eight different ligament property datasets on biomechanics of a lumbar L4–L5 finite element model. J. Biomech. 70:33–42, 2018.CrossRefGoogle Scholar
  37. 37.
    Naserkhaki, S., and M. El-Rich. Sensitivity of lumbar spine response to follower load and flexion moment: finite element study. Comput. Methods Biomech. Biomed. 20:550–557, 2017.CrossRefGoogle Scholar
  38. 38.
    Naserkhaki, S., J. L. Jaremko, and M. El-Rich. Effects of inter-individual lumbar spine geometry variation on load-sharing: geometrically personalized finite element study. J. Biomech. 49:2909–2917, 2016.CrossRefGoogle Scholar
  39. 39.
    Natarajan, R. N., and G. B. Andersson. The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading. Spine 24:1873, 1999.CrossRefGoogle Scholar
  40. 40.
    Noailly, J., J. A. Planell, and D. Lacroix. On the collagen criss-cross angles in the annuli fibrosi of lumbar spine finite element models. Biomech. Model. Mechanobiol. 10:203–219, 2011.CrossRefGoogle Scholar
  41. 41.
    Noailly, J., H.-J. Wilke, J. A. Planell, and D. Lacroix. How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? Consequences on the validation process. J. Biomech. 40:2414–2425, 2007.CrossRefGoogle Scholar
  42. 42.
    Okushima, H. Study on hydrodynamic pressure of lumbar intervertebral disc. Nihon geka hokan 39:45, 1970.Google Scholar
  43. 43.
    Park, W. M., K. Kim, and Y. H. Kim. Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine. Comput. Biol. 43:1234–1240, 2013.CrossRefGoogle Scholar
  44. 44.
    Patwardhan, A. G., R. M. Havey, G. Carandang, J. Simonds, L. I. Voronov, A. J. Ghanayem, K. P. Meade, T. M. Gavin, and O. Paxinos. Effect of compressive follower preload on the flexion–extension response of the human lumbar spine. J. Orthop. Res. 21:540–546, 2003.CrossRefGoogle Scholar
  45. 45.
    Pearcy, M. J. Stereo radiography of lumbar spine motion. Acta Orthop. Scand. 56:1–45, 1985.CrossRefGoogle Scholar
  46. 46.
    Pearcy, M. J., and N. Bogduk. Instantaneous axes of rotation of the lumbar intervertebral joints. Spine 13:1033–1041, 1988.CrossRefGoogle Scholar
  47. 47.
    Pearcy, M., I. Portek, and J. Shepherd. Three-dimensional x-ray analysis of normal movement in the lumbar spine. Spine 9:294–297, 1984.CrossRefGoogle Scholar
  48. 48.
    Pearcy, M., and S. Tibrewal. Axial rotation and lateral bending in the normal lumbar spine measured by three-dimensional radiography. Spine 9:582–587, 1984.CrossRefGoogle Scholar
  49. 49.
    Pearsall, D. J., J. G. Reid, and L. A. Livingston. Segmental inertial parameters of the human trunk as determined from computed tomography. Ann. Biomed. Eng. 24:198–210, 1996.CrossRefGoogle Scholar
  50. 50.
    Polga, D. J., B. P. Beaubien, P. M. Kallemeier, K. P. Schellhas, W. D. Lew, G. R. Buttermann, and K. B. Wood. Measurement of in vivo intradiscal pressure in healthy thoracic intervertebral discs. Spine 29:1320–1324, 2004.CrossRefGoogle Scholar
  51. 51.
    Potvin, J. Use of NIOSH equation inputs to calculate lumbosacral compression forces. Ergonomics 40:691–707, 1997.CrossRefGoogle Scholar
  52. 52.
    Rajaee, M. A., N. Arjmand, A. Shirazi-Adl, A. Plamondon, and H. Schmidt. Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities. Appl. Ergon. 48:22–32, 2015.CrossRefGoogle Scholar
  53. 53.
    Rajasekaran, S., N. Bajaj, V. Tubaki, R. M. Kanna, and A. P. Shetty. ISSLS prize winner: the anatomy of failure in lumbar disc herniation: an in vivo, multimodal, prospective study of 181 subjects. Spine 38:1491–1500, 2013.CrossRefGoogle Scholar
  54. 54.
    Rohlmann, A., U. Arntz, F. Graichen, and G. Bergmann. Loads on an internal spinal fixation device during sitting. J. Biomech. 34:989–993, 2001.CrossRefGoogle Scholar
  55. 55.
    Rohlmann, A., L. Bauer, T. Zander, G. Bergmann, and H.-J. Wilke. Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data. J. Biomech. 39:981–989, 2006.CrossRefGoogle Scholar
  56. 56.
    Rohlmann, A., G. Bergmann, and F. Graichen. Loads on internal spinal fixators measured in different body positions. Eur. Spine J. 8:354–359, 1999.CrossRefGoogle Scholar
  57. 57.
    Rohlmann, A., S. Neller, L. Claes, G. Bergmann, and H.-J. Wilke. Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine 26:E557–E561, 2001.CrossRefGoogle Scholar
  58. 58.
    Rohlmann, A., R. Petersen, V. Schwachmeyer, F. Graichen, and G. Bergmann. Spinal loads during position changes. Clin. Biomech. 27:754–758, 2012.CrossRefGoogle Scholar
  59. 59.
    Rohlmann, A., T. Zander, F. Graichen, M. Dreischarf, and G. Bergmann. Measured loads on a vertebral body replacement during sitting. Spine J. 11:870–875, 2011.CrossRefGoogle Scholar
  60. 60.
    Rohlmann, A., T. Zander, M. Rao, and G. Bergmann. Realistic loading conditions for upper body bending. J. Biomech. 42:884–890, 2009.CrossRefGoogle Scholar
  61. 61.
    Sato, K., S. Kikuchi, and T. Yonezawa. In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 24:2468, 1999.CrossRefGoogle Scholar
  62. 62.
    Schultz, A., G. Andersson, R. Ortengren, K. Haderspeck, and A. Nachemson. Loads on the lumbar spine: validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals. JBJS 64:713–720, 1982.CrossRefGoogle Scholar
  63. 63.
    Shiraz-Adl, A. Strain in fibers of a lumbar disc: analysis of the role of lifting in producing disc prolapse. Spine 14:96–103, 1989.CrossRefGoogle Scholar
  64. 64.
    Shirazi-Adl, A. Biomechanics of the lumbar spine in sagittal/lateral moments. Spine 19:2407–2414, 1994.CrossRefGoogle Scholar
  65. 65.
    Shirazi-Adl, A. Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element. J. Biomech. 39:267–275, 2006.CrossRefGoogle Scholar
  66. 66.
    Shirazi-Adl, A., A. M. Ahmed, and S. C. Shrivastava. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine 11:914–927, 1986.CrossRefGoogle Scholar
  67. 67.
    Shirazi-Adl, A., and M. Parnianpour. Load-bearing and stress analysis of the human spine under a novel wrapping compression loading. Clin. Biomech. 15:718–725, 2000.CrossRefGoogle Scholar
  68. 68.
    Shirazi-adl, S. A., S. C. Shrivastava, and A. M. Ahmed. Stress analysis of the lumbar disc-body unit in compression a three-dimensional nonlinear finite element study. Spine 9:120–134, 1984.CrossRefGoogle Scholar
  69. 69.
    Stemper, B. D., J. L. Baisden, N. Yoganandan, B. S. Shender, and D. J. Maiman. Mechanical yield of the lumbar annulus: a possible contributor to instability. J. Neurosurg. Spine 21:608–613, 2014.CrossRefGoogle Scholar
  70. 70.
    Stokes, I. A., and M. Gardner-Morse. Lumbar spine maximum efforts and muscle recruitment patterns predicted by a model with multijoint muscles and joints with stiffness. J. Biomech. 28:173177–175186, 1995.CrossRefGoogle Scholar
  71. 71.
    Stokes, I. A., and M. Gardner-Morse. Quantitative anatomy of the lumbar musculature. J. Biomech. 32:311–316, 1999.CrossRefGoogle Scholar
  72. 72.
    Van Dieen, J., and I. Kingma. Effects of antagonistic co-contraction on differences between electromyography based and optimization based estimates of spinal forces. Ergonomics 48:411–426, 2005.CrossRefGoogle Scholar
  73. 73.
    Wade, K. R., P. A. Robertson, A. Thambyah, and N. D. Broom. How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion. Spine 39:1018–1028, 2014.CrossRefGoogle Scholar
  74. 74.
    Wade, K., P. Robertson, A. Thambyah, and N. Broom. “Surprise” loading in flexion increases the risk of disc herniation due to annulus–endplate junction failure: a mechanical and microstructural investigation. Spine 40(12):891–901, 2015.CrossRefGoogle Scholar
  75. 75.
    Wilke, H. J., P. Neef, M. Caimi, T. Hoogland, and L. E. Claes. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24:755–762, 1999.CrossRefGoogle Scholar
  76. 76.
    Wilke, H.-J., P. Neef, B. Hinz, H. Seidel, and L. Claes. Intradiscal pressure together with anthropometric data–a data set for the validation of models. Clin. Biomech. 16:S111–S126, 2001.CrossRefGoogle Scholar
  77. 77.
    Xia, Q., S. Wang, M. Kozanek, P. Passias, K. Wood, and G. Li. In-vivo motion characteristics of lumbar vertebrae in sagittal and transverse planes. J. Biomech. 43:1905–1909, 2010.CrossRefGoogle Scholar
  78. 78.
    Zander, T., M. Dreischarf, A.-K. Timm, W. W. Baumann, and H. Schmidt. Impact of material and morphological parameters on the mechanical response of the lumbar spine—a finite element sensitivity study. J. Biomech. 53:185–190, 2017.CrossRefGoogle Scholar
  79. 79.
    Zhu, D., G. Gu, W. Wu, H. Gong, W. Zhu, T. Jiang, and Z. Cao. Micro-structure and mechanical properties of annulus fibrous of the L4–5 and L5–S1 intervertebral discs. Clin. Biomech. 23:S74–S82, 2008.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSharif University of TechnologyTehranIran
  2. 2.Division of Applied Mechanics, Department of Mechanical EngineeringÉcole PolytechniqueMontrealCanada

Personalised recommendations