Annals of Biomedical Engineering

, Volume 46, Issue 10, pp 1479–1497 | Cite as

MRI Robots for Needle-Based Interventions: Systems and Technology

  • Reza Monfaredi
  • Kevin Cleary
  • Karun Sharma
Medical Robotics


Magnetic resonance imaging (MRI) provides high-quality soft-tissue images of anatomical structures and radiation free imaging. The research community has focused on establishing new workflows, developing new technology, and creating robotic devices to change an MRI room from a solely diagnostic room to an interventional suite, where diagnosis and intervention can both be done in the same room. Closed bore MRI scanners provide limited access for interventional procedures using intraoperative imaging. MRI robots could improve access and procedure accuracy. Different research groups have focused on different technology aspects and anatomical structures. This paper presents the results of a systematic search of MRI robots for needle-based interventions. We report the most recent advances in the field, present relevant technologies, and discuss possible future advances. This survey shows that robotic-assisted MRI-guided prostate biopsy has received the most interest from the research community to date. Multiple successful clinical experiments have been reported in recent years that show great promise. However, in general the field of MRI robotic systems is still in the early stage. The continued development of these systems, along with partnerships with commercial vendors to bring this technology to market, is encouraged to create new and improved treatment opportunities for future patients.


Literature survey Magnetic resonance imaging Robots Diagnostic Interventional Procedures 



This work was partially supported by the National Institutes of Health (NIH) under Grants R01EB020003, R01CA172244, and R21EB020700.


  1. 1.
    Ahmed, H. U., A. El-Shater Bosaily, L. C. Brown, R. Gabe, R. Kaplan, M. K. Parmar, Y. Collaco-Moraes, K. Ward, R. G. Hindley, A. Freeman, A. P. Kirkham, R. Oldroyd, C. Parker, and M. Emberton. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389:815–822, 2017.Google Scholar
  2. 2.
    ASTM F2503-13. Standard Practice for Marking Medical Devices and Other Items for Safety in the Magnetic Resonance Environment.Google Scholar
  3. 3.
    Ball, M. W., A. E. Ross, K. Ghabili, C. Kim, C. Jun, D. Petrisor, L. Pan, J. I. Epstein, K. J. Macura, D. S. Stoianovici, and M. E. Allaf. Safety and feasibility of direct magnetic resonance imaging-guided transperineal prostate biopsy using a novel magnetic resonance imagingsafe robotic device. J. Urol. 109:216–221, 2017.Google Scholar
  4. 4.
    Bosch, M. R., M. R. Moman, M. Vulpen, J. J. Battermann, E. Duiveman, L. J. Schelven, H. Leeuw, J. J. Lagendijk, and M. A. Moerland. MRI-guided robotic system for transperineal prostate interventions: proof of principle. Phys. Med. Biol. 55:N133–N140, 2010.Google Scholar
  5. 5.
    Boström, Peter, Sean R. H. Davidson, Uri Lindner, Orit Raz, Alexandra Colquhoun, Eugen Hlasny, Masoom A. Haider, Stuart Mccluskey, Marshall Sussman, Yang Yi, Mark Gertner, and Walter Kucharczyk. First clinical experience with robotic Mr-guided focal laser ablation of prostate cancer. J. Urol. 185:e520–e521, 2011.Google Scholar
  6. 6.
    Center for Disease Control and Prevention. [Online].
  7. 7.
    Chan, K. G., T. Fielding, and M. Anvari. An image-guided automated robot for MRI breast biopsy. Int. J. Med. Robot. 12(3):461–477, 2016.Google Scholar
  8. 8.
    Chang, S. D., W. Main, D. P. Martin, I. C. Gibbs, and M. P. Heilbrun. An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system. J. Neurosurg. 52(1):140–146, 2003.Google Scholar
  9. 9.
    Chen, L., T. Paetz, V. Dicken, S. Krass, J. Al Issawi, D. Ojdanić, S. Krass, G. Tigelaar, J. Sabisch, A. V. Poelgeest, and J. Schaechtele. Design of a dedicated five degreeof-freedom magnetic resonance imaging compatible robot for image guided prostate biopsy. J. Med. Devices 9(1):015002, 2015.Google Scholar
  10. 10.
    Chen, Y., M. E. Poorman, D. B. Comber, E. B. Pitt, C. Liu, I. S. Godage, H. Yu, W. A. Grissom, E. J. Barth, and R. J. Webster. Treating epilepsy via thermal ablation: initial experiments with an MRI-guided concentric tube robot. J. Nat. 35:1–2, 2017.Google Scholar
  11. 11.
    Chen, Y., S. Xu, A. Squires, R. Seifabadi, I. B. Turkbey, P. Pinto, P. Choyke, B. Wood, and Z. T. H. Tse. MRI guided robotically assisted focal laser ablation of the prostate using canine cadavers. IEEE Trans. Biomed. Eng. 2017. Scholar
  12. 12.
    Chen, K., J. Yuen, H. Ho, C. Cheng, K. Lau, l Lee, Y. Tan, Y. Law, and K. Tay. Robot-assisted transperineal MRI-ultrasound (MRI-US) fusion targeted biopsy is more efficacious in detecting clinically significant prostate cancer than systematic random saturation biopsy. Int. J. Urol. 23:64–65, 2016.Google Scholar
  13. 13.
    Chinzei, K., N. Hata, F. A. Jolesz, and R. Kikinis. MR compatible surgical assist robot: system integration and preliminary feasibility study. Medical Image Computing and Computer-Assisted Intervention. In: MICCAI, pp. 921–930, 2000.Google Scholar
  14. 14.
    Cleary, K. and A Kinsella. The Operating Room of the Future. Department of Radiology, Georgetown University, Washington DC, Workshop Report
  15. 15.
    Cleary, K., S. Lim, C. Jun, R. Monfaredi, K. Sharma, S. T. Fricke, L. Vargas, D. Petrisor, and D. Stoianovici. Robotically assisted long bone biopsy under MRI imaging: workflow and preclinical study. Acad. Radiol. 25(1):74–81, 2018.Google Scholar
  16. 16.
    Comber, D. B., E. J. Barth, and R. J. Webster. Design and control of an magnetic resonance compatible precision pneumatic active cannula robot. J. Med. Devices 8:011003, 2014.Google Scholar
  17. 17.
    Comber, D., E. B. Pitt, H. B. Gilbert, M. W. Powelson, E. Matijevich, J. S. Neimat, R. J. Webster, and E. J. Barth. Optimization of curvilinear needle trajectories for transforamenal hippocampotomy. Oper. Neurosurg. 13(1):15–22, 2016.Google Scholar
  18. 18.
    Eslami, S., G. S. Fischer, S. E. Song, J. Tokuda, N. Hata, C. M. Tempany, and I Iordachita. Towards clinically optimized MRI-guided surgical manipulator for minimally invasive prostate percutaneous interventions: constructive design. In: IEEE International Conference on Robotics and Automation. pp. 1228–1233, 2013.Google Scholar
  19. 19.
    Eslami, S., W. Shang, G. Li, N. Patel, G. S. Fischer, J. Tokuda, N. Hata, C. M. Tempany, and I. Iordachita. In-bore prostate transperineal interventions with an mri-guided parallel manipulator: system development and preliminary evaluation. Int. J. Med. Robot. 12(2):199–213, 2016.Google Scholar
  20. 20.
    Ferlay, J., I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D. M. Parkin, D. Forman, and F. Bray. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136(5):E359–E386, 2015.Google Scholar
  21. 21.
    Fischer, G. S., G. Cole, and H. Su. Approaches to Creating and Controlling Motion in MRI. In: Conference of the IEEE Engineering in Medicine and Biology Society. Boston, pp. 6687–6690, 2011.Google Scholar
  22. 22.
    Fischer, G. S., G. Cole, and H. Su. Approaches to creating and controlling motion in MRI. In: IEEE Engineering in Medicine and Biology Conference. pp. 6687–6690, 2011.Google Scholar
  23. 23.
    Fischer, G. S., A. Krieger, I. Iordachita, C. Csoma, L. L. Whitcomb, and G. Fichtinger. MRI compatibility of robot actuation techniques: a comparative study. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 509–517, 2008.Google Scholar
  24. 24.
    Franco, E., D. Brujic, M. Rea, W. M. Gedroyc, and M. Ristic. Needle-guiding robot for laser ablation of liver tumors under MRI guidance. IEEE/ASME Trans. Mechatron. 21(2):931–944, 2016.Google Scholar
  25. 25.
    Franco, E., M. Ristic, M. Rea, and W. M. Gedroyc. Robot-assistant for MRI-guided liver ablation: a pilot study. Med. Phys. 43(10):5347–5356, 2016.Google Scholar
  26. 26.
    Fry, F. J. Intense focused ultrasound in medicine. Eur. Urol. 23(1):2–7, 1993.Google Scholar
  27. 27.
    Gassert, R., R. Moser, E. Burdet, and H. Bleuler. Mri/fmri-compatible robotic system with force feedback for interaction with human motion. IEEE Trans. Mech. 11:216–224, 2006.Google Scholar
  28. 28.
    Gassert, R., A. Yamamoto, D. Chapuis, L. Dovat, H. Bleuler, and E. Burdet. Actuation methods for applications in MR environments. Concepts Magn. Reson. Part B 29B(4):191–209, 2006.Google Scholar
  29. 29.
    Gering, D. T., A. Nabavi, R. Kikinis, N. Hata, L. J. O’Donnell, W. E. Grimson, F. A. Jolesz, P. M. Black, and W. M. Wells. “An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J. Magn. Reson. Imaging 13:967–975, 2001.Google Scholar
  30. 30.
    Giannarini, G., M. Zazzara, M. Rossanese, V. Palumbo, M. Pancot, G. Como, M. Abbinante, and V. Ficarra. Will multi-parametric magnetic resonance imaging be the future tool to detect clinically significant prostate cancer? Front. Oncol. 4:294, 2014.Google Scholar
  31. 31.
    Groenhuis, V., F. J. Siepel, J. Veltman, and S. Stramigioli. Design and characterization of Stormram 4: an MRI-compatible robotic system for breast biopsy. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, pp. 928–933, 2017.Google Scholar
  32. 32.
    Heikkilä, T., S. Yrjänä, P. Kilpeläinen, J. Koivukangas, and M. Sallinen. An assistive surgical MRI compatible robot: first prototype with field tests. InTech, Available from:, 2012.
  33. 33.
    Ho, M., A. McMillan, J. Simard, R. Gullapalli, and J. Desai. Toward a meso-scale SMA-actuated MRI-compatible Neurosurgical Robot. IEEE Trans. Rob. 99:1–10, 2011.Google Scholar
  34. 34.
    Hoeks, C. M., J. O. Barentsz, T. Hambrock, D. Yakar, D. M. Somford, S. W. Heijmink, T. W. Scheenen, P. C. Vos, H. Huisman, I. M. van Oort, J. A. Witjes, A. Heerschap, and J. J. Fütterer. Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 261(1):46–66, 2011.Google Scholar
  35. 35.
  36. 36.
  37. 37.
    Jiang, S., F. Sun, W. Feng, L. F. Hofman, and Y. Yu. Analysis of a novel high-precision 5-degrees of freedom magnetic resonance imaging-compatible surgery robot for needle-insertion prostate brachytherapy. Proc. Inst. Mech. Eng. Part C 228(5):865–876, 2013.Google Scholar
  38. 38.
    Kaiser, W. A., H. Fischer, J. Vagner, and M. Selig. Robotic system for biopsy and therapy of breast lesions in a high-field whole-body magnetic resonance tomography unit. Invest. Radiol. 35(8):513–519, 2000.Google Scholar
  39. 39.
    Kaufmann, S., J. Mischinger, B. Amend, S. Rausch, M. Adam, M. Scharp, F. Fend, U. Kramer, M. Notohamiprodjo, K. Nikolaou, A. Stenzl, J. Bedke, and S. Kruck. First report of robot–assisted transperineal fusion versus off–target biopsy in patients undergoing repeat prostate biopsy. World J. Urol. 35:1023–1029, 2017.Google Scholar
  40. 40.
    Khabsa, M., and C. L. Giles. The number of scholarly documents on the public web. PLoS ONE 9(5):e93949, 2017. Scholar
  41. 41.
    Kim, Y., S. S. Cheng, M. Diakite, R. P. Gullapalli, J. M. Simard, and J. P. Desai. Toward the development of a flexible mesoscale MRI-compatible neurosurgical continuum robot. IEEE Trans. Rob. 33(6):1386–1397, 2017.Google Scholar
  42. 42.
    Kim, J. S., D. Levi, R. Monfaredi, K. Cleary and I. Iordachita. A new 4-DOF parallel robot for MRI-guided percutaneous interventions: kinematic analysis. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, pp. 4251–4255, 2017.Google Scholar
  43. 43.
    Krieger, A., S. E. Song, N. B. Cho, I. Iordachita, P. Guion, G. Fichtinger, and L. Whitcomb. Development and evaluation of an actuated MRI-compatible robotic system for MRI-guided prostate intervention. IEEE/ASME Trans. Mechatron. 18(1):273–284, 2013.Google Scholar
  44. 44.
    Krieger, A., R. C. Susil, C. Menard, J. A. Coleman, G. Fichtinger, E. Atalar, and L. L. Whitcom. Design of a novel MRI compatible manipulator for image guided prostateinterventions. IEEE Trans. Biomed. Eng. 52(2):306–313, 2005.Google Scholar
  45. 45.
    Lang, M., A. Greer, and G. Sutherland. Intra-operative robotics: neuroArm. Intraoperative Imaging 109:231–236, 2011.Google Scholar
  46. 46.
    Larson, P., P. A. Starr, J. L. Ostrem, N. Galifianakis, M. S. L. Palenzuela, and A. Martin. Application accuracy of a second generation interventional MRI stereotactic platform: initial experience in 101 DBS electrode implantations. Neurosurgery 60:187, 2013.Google Scholar
  47. 47.
    Larson, B. T., N. V. Tsekos, and A. G. Erdman. A robotic device for minimally invasive breast interventions with real-time MRI guidance. In: Third IEEE Symposium on Bioinformatics and Bioengineering, Bethesda, 2003.Google Scholar
  48. 48.
    Li, Gang, Su Hao, Gregory A. Cole, Weijian Shang, Kevin Harrington, Alex Camilo, Julie G. Pilitsis, and Gregory S. Fischer. Robotic System for MRI-Guided Stereotactic Neurosurgery. IEEE Trans. Biomed. Eng. 62(4):1077–1088, 2015.Google Scholar
  49. 49.
    Li, M., A. Kapoory, D. Mazilu, B. Woody, and K. A. Horvath. Cardiac Interventions under MRI guidance using robotic assistance. In: IEEE International Conference on Robotics and Automation (ICRA), Anchorage, 2010.Google Scholar
  50. 50.
    Li, G., H. Su, J. Tokuda, N. Hata, C. M. Tempany, and G. S. Fischer. A fully actuated robotic assistant for MRI-guided prostate biopsy and brachytherapy. In: Proceedings of SPIE the International Society for Optical Engineering, 2014.Google Scholar
  51. 51.
    Masamune, K., E. Kobayashi, Y. Masutani, M. Suzuki, T. Dohi, H. Iseki, and K. Takakura. Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J Image Guid Surg. 1(4):242–248, 1995.Google Scholar
  52. 52.
    McClure, Ashley. Using high-intensity focused ultrasound as a means to provide targeted drug delivery: a literature review. J. Diagn. Med. Sonogr. 32(6):343–350, 2016.Google Scholar
  53. 53.
  54. 54.
    Melzer, A., B. Gutmann, T. Remmele, R. Wolf, A. Lukoscheck, M. Bock, H. Bardenheuer, and H. Fischer. INNOMOTION for percutaneous image-guided interventions: principles and evaluation of this MR- and CT-compatible robotic system. IEEE Eng. Med. Biol. Mag. 27(3):66–73, 2008.Google Scholar
  55. 55.
    Miller, J. G., M. Li, D. Mazilu, T. Hunt, and K. A. Horvath. Robot-assisted real-time magnetic resonance image guided transcatheter aortic valve replacement. J. Thorac. Cardiovasc. Surg. 51(5):1407–1412, 2016.Google Scholar
  56. 56.
    Miller, D., N. Smith, M. Bailey, G. Czarnota, K. Hynynen, and I. Makin. Overview of therapeutic ultrasound applications and safety considerations. J. Ultrasound Med. 31(4):623–634, 2012.Google Scholar
  57. 57.
    Monfaredi, R., R. Seifabadi, G. Fichtinger, I. Iordachita. Design of a decoupled MRI-compatible force sensor using fiber Bragg grating sensors for robot-assisted prostate interventions. In: Image-Guided Procedures, Robotic Interventions, and Modeling: Medical Imaging, 2013.Google Scholar
  58. 58.
    Monfaredi, R., R. Seifabadi, I. Iordachita, R. Sze, N.M. Safdar, K. Sharma, S. Fricke, A. Krieger, and K. Cleary. A prototype body-mounted MRI-compatible robot for needle guidance in shoulder arthrography, In: Proceedings of the IEEE RAS & EMBS International Conference. Biomedical Robotics and Biomechatronics (BioRob), Sao Paulo, pp. 40–45, 2014.Google Scholar
  59. 59.
    Monfaredi, R., E. Wilson, R. Sze, K. Sharma, B. Azizi, I. Iordachita, and K. Cleary. Shoulder-mounted robot for mri-guided arthrography: accuracy and mounting study. In: International Conference of the IEEE Engineering in Medicine and Biology Society pp. 3643–3646, 2015.Google Scholar
  60. 60.
  61. 61.
    Mozer, P. C., A. W. Partin, and D. Stoianovici. Robotic image-guided needle interventions of the prostate. Rev. Urol. 11(1):7–15, 2009.Google Scholar
  62. 62.
    Navarro-Alarcon, D., S. Singh, T. Zhang, H. L. Chung, K. W. Ng, M. K. Chow, and Y. Liu. Developing a compact robotic needle driver for MRI-guided breast biopsy in tight environments. IEEE Robot. Autom. Lett. 2(3):1648–1655, 2017.Google Scholar
  63. 63.
    Nycz, C. J., R. Gondokaryono, P. Carvalho, N. Patel, M. Wartenberg, J. G. Pilitsis, and G. S. Fischer. Mechanical validation of an MRI compatible stereotactic neurosurgery robot in preparation for pre-clinical trials. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1677–1684, 2017.Google Scholar
  64. 64.
    Nycz, C. J., R. Gondokaryono, P. Carvalho, N. Patel, M. Wartenberg, J. G. Pilitsis, and G. S. Fischer. Mechanical validation of an MRI compatible stereotactic neurosurgery robot in preparation for pre-clinical trials. In Intelligent Robots and Systems (IROS), 2017.Google Scholar
  65. 65.
    Ouchi, R., K. Saotome, A. Matsushita, and K. Suzuki. Development of an MRI-powered robotic system for cryoablation. In: IEEE 37th Annual International Conference of Engineering in Medicine and Biology Society (EMBC), Milan, pp. 1186–1189, 2015.Google Scholar
  66. 66.
    Park, S. B., J. G. Kim, K. W. Lim, C. H. Yoon, D. J. Kim, H. S. Kang, and Y. H. Jo. A magnetic resonance image-guided breast needle intervention robot system: overview and design considerations. Int. J. Comput. Assist. Radiol. Surg. 12(08):1319–1331, 2017.Google Scholar
  67. 67.
    Riffel, P., R. K. Rao, S. Haneder, M. Meyer, S. O. Schoenberg, and H. J. Michaely. Impact of field strength and RF excitation on abdominal diffusion-weighted magnetic resonance imaging. World J Radiol. 5(9):334–344, 2013.Google Scholar
  68. 68.
    Schouten, M. G., J. G. Bomers, D. Yakar, H. Huisman, E. Rothgang, D. Bosboom, T. W. Scheenen, S. Misra, and J. J. Fütterer. Evaluation of a robotic technique for transrectal MRI-guided prostate biopsies. Eur. Radiol. 22(2):476–483, 2012.Google Scholar
  69. 69.
    Seifabadi, R., F. Aalamifar, I. Iordachita, and G. Fichtinger. Toward teleoperated needle steering under continuous MRI guidance for prostate percutaneous interventions. Int. J. Med.l Robot. Comput. Assist Surg. 12:355–369, 2016.Google Scholar
  70. 70.
    Shang, W. and G. S. Fischer. A high accuracy multi-image registration method for tracking MRI-guided robots. In: Image-Guided Procedures, Robotic Interventions, and Modeling, 2012.Google Scholar
  71. 71.
    Shellock, F. G., and J. V. Crues. MR safety and the american college of radiology. Am. J. Roentgenol. 178(6):1349–1352, 2002.Google Scholar
  72. 72.
    Shokrollahi, P., J. M. Drake, and A. A. Goldenberg. Quantification of force and torque applied by a high-field magnetic resonance imaging system on an ultrasonic motor for mri-guided robot-assisted interventions. Actuators. 6, 2017.Google Scholar
  73. 73.
    Siegel, R. L., K. D. Miller, and A. Jemal. Cancer statistics, 2015. Cancer J. Clin. 65:5–29, 2015.Google Scholar
  74. 74.
    Song, S. E., N. B. Cho, G. Fischer, N. Hata, C. Tempany, G. Fichtinger, and I. Iordachita. Development of a pneumatic robot for mri-guided transperineal prostate biopsy and brachytherapy: new approaches. In: IEEE International Conference on Robotics and Automation, 2010.Google Scholar
  75. 75.
    Song, S. E., N. Cho, J. Tokuda, N. Hata, C. Tempany, G. Fichtinger, and .I Iordachita. Preliminary evaluation of a MRI-compatible modular robotic system for MRI-guided prostate interventions. In: Proceeding of the IEEE RAS EMBS International Conference Biomed Robot Biomechatron, Tokyo, pp. 796–801, 2010.Google Scholar
  76. 76.
    Song, S., N. Hata, I. Iordachita, G. Fichtinger, C. Tempany, and J. Tokuda. A workspace-oriented needle guiding robot for 3T MRI-guided transperineal prostate intervention: evaluation of in-bore workspace and MRI compatibility. Int. J. Med. Robot. 9(1):67–74, 2013.Google Scholar
  77. 77.
    Squires, A., J. H. Oshinski, N. M. Boulis, and Z. T. H. Tse. SpinoBot: an MRI-guided needle positioning system for spinal cellular therapeutics. Ann. Biomed. Eng. 46:1–13, 2017.Google Scholar
  78. 78.
    Srimathveeravalli, Govindarajan, Chunwoo Kim, Doru Petrisor, Paula Ezell, Jonathan Coleman, Hedvig Hricak, Stephen B. Solomon, and Dan Stoianovici. MRI-safe robot for targeted transrectal prostate biopsy: animal experiments. BJU Int. 113(6):977–985, 2014.Google Scholar
  79. 79.
    Starr, P. A., A. J. Martin, J. L. Ostrem, P. Talke, N. Levesque, and P. S. Larson. Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skullmounted aiming device: technique and application accuracy. J. Neurosurg. 112(3):479–490, 2010.Google Scholar
  80. 80.
    Stoianovici, D., C. Jun, S. Lim, P. Li, D. Petrisor, S. Fricke, K. Sharma, and K. Cleary. Multi-imager compatible, MR safe, remote center of motion needle-guide robot. IEEE Transactions on Biomedical Engineering, vol. TBD, no. TBD, 2017.Google Scholar
  81. 81.
    Stoianovici, D., C. Jun, S. Lim, P. Li, D. Petrisor, S. Fricke, K. Sharma, and K. Cleary. Multi-imager compatible, MR safe, remote center of motion needle-guide robot. IEEE Trans. Biomed. Eng. 65(1):165–177, 2018.Google Scholar
  82. 82.
    Stoianovici, D., A. Patriciu, D. Mazilu, D. Petrisor, and L. Kavoussi. A new typeof motor: pneumatic step motor. IEEE/ASME Trans. Mechatron. 12(1):98–106, 2007.Google Scholar
  83. 83.
    Su, H., A. Camilo, G. A. Cole, N. Hata, C. M. Tempany, and G. S. Fischer. High-field MRI-compatible needle placement robot for prostate interventions. Stud. Health Technol. Inform. 163:623–629, 2011.Google Scholar
  84. 84.
    Su, H., I. I. Iordachita, X. Yan, G. A. Cole, and G. S. Fischer. Reconfigurable MRI-guided robotic surgical manipulator: prostate brachytherapy and neurosurgery applications. In: 33rd Annual International Conference of the IEEE EMBS, Boston, pp. 2111–2114, 2011.Google Scholar
  85. 85.
    Su, H., I. Iordachita, J. Tokuda, N. Hata, X. Liu, R. Seifabadi, S. Xu, B. Wood, and G. S. Fischer. Fiber-optic force sensors for MRI-guided interventions and rehabilitation: a review. IEEE Sens. J. 17(7):1952–1963, 2017.Google Scholar
  86. 86.
    Su, H., W. Shang, G. Cole, G. Li, K. Harrington, A. Camilo, J. Tokuda, C. M. Tempany, N. Hata, and G. S. Fischer. Piezoelectrically actuated robotic system for MRI-guided prostate percutaneous therapy. IEEE ASME Trans. Mechatron. 20(4):1920–1932, 2015.Google Scholar
  87. 87.
    Sutherland, G. R., S. Lama, L. Shi Gan, S. Wolfsberger, and K. Zareinia. Merging machines with microsurgery: clinical experience with neuroArm. J. Neurosurg. 118(3):521–529, 2013.Google Scholar
  88. 88.
    Tavallaei, M. A., Y. Thakur, S. Haider, and M. Drangova. A magnetic-resonance-imaging-compatible remot catheter navigation system. IEEE Trans. Biomed. Eng. 60(4):899–905, 2013.Google Scholar
  89. 89.
    Tokuda, J., G. S. Fischer, S. P. DiMaio, D. G. Gobbi, C. Csoma, P. W. Mewes, G. Fichtinger, C. M. Tempany, and N. Hata. Integrated navigation and control software system for MRI-guided robotic prostate interventions. Comput. Med. Imaging Graph. 34(1):3–8, 2010.Google Scholar
  90. 90.
    Tokuda, J., S. E. Song, G. S. Fischer, I. Iordachita, R. Seifabadi, N. B. Cho, K. Tuncali, G. Fichtinger, C. M. Tempany, and N. Hata. Preclinical evaluation of an MRI-compatible pneumatic robot for angulated needle placement in transperineal prostate interventions. Int. J. Comput. Assist. Radiol. Surg. 7(6):949–957, 2012.Google Scholar
  91. 91.
    Tokuda, J., S. E. Song, K. Tuncali, C. Tempany, and N. Hata. Configurable automatic detection and registration of fiducial frames for device-to-image registration in mri-guided prostate interventions. Med. Image Comput. Comput. Assist. Interv. 16(03):355–362, 2013.Google Scholar
  92. 92.
    Tsekos, N. V., A. Khanicheh, E. Christoforou, and C. Mavroidis. Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Annu. Rev. Biomed. Eng. 9:351–387, 2007.Google Scholar
  93. 93.
    Varma, T., P. Eldridge, A. Forster, S. Fox, N. Fletcher, M. Steiger, P. Littlechild, P. Byrne, A. Sinnott, and K. Tyler. Use of the NeuroMate stereotactic robot in a frameless mode for movement disorder surgery. Stereotact. Funct. Neurosurg. 80(1–4):132–135, 2004.Google Scholar
  94. 94.
    Vartholomeos, P., C. Bergeles, L. Qin, and P. E. Dupont. An MRI-powered and controlled actuator technology for tetherless robotic interventions. Int. J. Botic. Res. 32(13):1536–1552, 2013.Google Scholar
  95. 95.
    Volkin, D., B. Turkbey, A. N. Hoang, S. Rais-Bahrami, N. Yerram, A. Walton-Diaz, J. W. Nix, B. J. Wood, P. L. Choyke, and P. A. Pinto. Multiparametric magnetic resonance imaging (MRI) and subsequent MRI/ultrasonography fusion-guided biopsy increase the detection of anteriorly located prostate cancers. BJU Int. 114(6b):E43–E49, 2014.Google Scholar
  96. 96.
    What are the key statistics about breast cancer? American Cancer Society. Accessed 29 April 2016.
  97. 97.
    Xu, H., A. Lasso, S. Vikal, P. Guion, A. Krieger, A. Kaushal, L.L. Whitcomb, and G. Fichtinger. Clinical accuracy of robot-assisted prostate biopsy in closed MRI scanner. In: The Hamlyn Symposium on Medical Robotics, London, pp. 7–8, 2010.Google Scholar
  98. 98.
    Yang, B., S. Roys, U. X. Tan, M. Philip, H. Richard, R. Gullapalli, and J. P. Desai. Design, development, and evaluation of a Master-Slave surgical system for breast biopsy under continuous MRI. Int. J. Rob. Res. 33(4):616–630, 2014.Google Scholar
  99. 99.
    Yiallouras, C., K. Ioannides, T. Dadakova, M. Pavlina, M. Bock, and C. Damianou. Three-axis MR-conditional robot for high-intensity focused ultrasound for treating prostate diseases transrectally. J. Ther. Ultrasound 3:2, 2015.Google Scholar
  100. 100.
    Zandman, J., E. E. G. Hekman, F. van der Heijden, R. Borra, and S. Misra. The MIRIAM robot: a novel robotic system for MR-guided needle insertion in the prostate. J. Med. Robot. Res. 2(3):1750006, 2017.Google Scholar
  101. 101.
    Zhang, T., D. N. Alarcon, K. W. Ng, M. K. Chow, Y. H. Liu, and H. L. Chung: A novel palm-shape breast deformation robot for MRI-guided biopsy. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, 2016.Google Scholar
  102. 102.
    Zhang, Y., M. Lu and H. Du. Kinematics analysis and trajectory planning for a breast intervention robot under MRI environment. In: IEEE International Conference on Cyborg and Bionic Systems (CBS), Beijing, pp. 237–242, 2017.Google Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National Health SystemWashingtonUSA
  2. 2.Diagnostic Imaging and Radiology DepartmentChildren’s National Health SystemWashingtonUSA

Personalised recommendations