Annals of Biomedical Engineering

, Volume 46, Issue 11, pp 1785–1796 | Cite as

A Hydrogel Meniscal Replacement: Knee Joint Pressure and Distribution in an Ovine Model Compared to Native Tissue

  • Kristine M. Fischenich
  • Hannah M. Pauly
  • Jackson T. Lewis
  • Travis S. Bailey
  • Tammy L. Haut DonahueEmail author


Pressure distribution of the native ovine knee meniscus was compared to a medial meniscectomy and three treatment conditions including a suture reattachment of the native tissue, an allograft, and a novel thermoplastic elastomer hydrogel (TPE) construct. The objective of this study was to assess the efficacy of a novel TPE hydrogel construct at restoring joint pressure and distribution. Limbs were loaded in uniaxial compression at 45°, 60°, and 75° flexion and from 0 to 181 kg. The medial meniscectomy decreased contact area by approximately 50% and doubled the mean and maximum pressure reading for the medial hemijoint. No treatment condition tested within this study was able to fully restore medial joint contact area and pressures to the native condition. A decrease in lateral contact area and increase in pressures with the meniscectomy was also seen; and to some degree, all reattachment and replacement conditions including the novel TPE hydrogel replacement helped to restore lateral pressures. Although the TPE construct did not perform as well as hoped in the medial compartment, it performed as well as, if not better, than the other reattachment and replacement options in the lateral. Further work is necessary to determine the best anchoring and attachment methods.


Osteoarthritis Meniscectomy Allograft Reattachment Tekscan Pressure mapping Thermoplastic elastomer polymer 



Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Number R21 AR069826. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

The authors have a patent Soft Tissue Mimetics and Thermoplastic Elastomer Hydrogels pending, and a patent Thermoplastic Elastomer Hydrogels pending.

Supplementary material

10439_2018_2069_MOESM1_ESM.pdf (86 kb)
Supplementary material 1 (PDF 87 kb)


  1. 1.
    Ahmed, A. M., and D. L. Burke. In-vitro measurement of static pressure distribution in synovial joints–Part I: Tibial surface of the knee. J. Biomech. Eng. 105:216–225, 1983.CrossRefGoogle Scholar
  2. 2.
    Allen, M. J., J. E. Houlton, S. B. Adams, and N. Rushton. The surgical anatomy of the stifle joint in sheep. Vet. Surg. 27:596–605, 1998.CrossRefGoogle Scholar
  3. 3.
    Bouyarmane, H., P. Beaufils, N. Pujol, J. Bellemans, S. Roberts, T. Spalding, S. Zaffagnini, M. Marcacci, P. Verdonk, M. Womack, and R. Verdonk. Polyurethane scaffold in lateral meniscus segmental defects: clinical outcomes at 24 months follow-up. Orthop. Traumatol. Surg. Res. 100:153–157, 2014.CrossRefGoogle Scholar
  4. 4.
    Brimacombe, J. M., D. R. Wilson, A. J. Hodgson, K. C. T. Ho, and C. Anglin. Effect of calibration method on Tekscan sensor accuracy. J. Biomech. Eng. 131:34503, 2009.CrossRefGoogle Scholar
  5. 5.
    Brophy, R. H., J. Cottrell, S. A. Rodeo, T. M. Wright, R. F. Warren, and S. A. Maher. Implantation of a synthetic meniscal scaffold improves joint contact mechanics in a partial meniscectomy cadaver model. J. Biomed. Mater. Res. A 92:1154–1161, 2010.Google Scholar
  6. 6.
    Brophy, R. H., D. Zeltser, R. W. Wright, and D. Flanigan. Anterior cruciate ligament reconstruction and concomitant articular cartilage injury: incidence and treatment. Arthroscopy 26:112–120, 2010.CrossRefGoogle Scholar
  7. 7.
    Buma, P., N. N. Ramrattan, T. G. van Tienen, and R. P. H. Veth. Tissue engineering of the meniscus. Biomaterials 25:1523–1532, 2004.CrossRefGoogle Scholar
  8. 8.
    Chen, M. I., T. P. Branch, and W. C. Hutton. Is it important to secure the horns during lateral meniscal transplantation? A cadaveric study. Arthroscopy 12:174–181, 1996.CrossRefGoogle Scholar
  9. 9.
    Chevrier, A., M. Nelea, M. B. Hurtig, C. D. Hoemann, and M. D. Buschmann. Meniscus structure in human, sheep, and rabbit for animal models of meniscus repair. J. Orthop. Res. 27:1197–1203, 2009.CrossRefGoogle Scholar
  10. 10.
    Chiari, C., U. Koller, R. Dorotka, C. Eder, R. Plasenzotti, S. Lang, L. Ambrosio, E. Tognana, E. Kon, D. Salter, and S. Nehrer. A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthr. Cartil. 14:1056–1065, 2006.CrossRefGoogle Scholar
  11. 11.
    Cottrell, J. M., P. Scholten, T. Wanich, R. F. Warren, T. M. Wright, and S. A. Maher. A new technique to measure the dynamic contact pressures on the Tibial Plateau. J. Biomech. 41:2324–2329, 2008.CrossRefGoogle Scholar
  12. 12.
    Elsner, J. J., S. Portnoy, G. Zur, F. Guilak, A. Shterling, and E. Linder-Ganz. Design of a free-floating polycarbonate-urethane meniscal implant using finite element modeling and experimental validation. J. Biomech. Eng. 132:95001, 2010.CrossRefGoogle Scholar
  13. 13.
    Fairbank, T. J. Knee joint changes after meniscectomy. J. Bone Joint Surg. Br. 30B:664–670, 1948.CrossRefGoogle Scholar
  14. 14.
    Fischenich, K. M., K. Boncella, J. T. Lewis, T. S. Bailey, and T. L. Haut Donahue. Dynamic compression of human and ovine meniscal tissue compared with a potential thermoplastic elastomer hydrogel replacement. J. Biomed. Mater. Res. A 105:1–7, 2017.CrossRefGoogle Scholar
  15. 15.
    Fischenich, K. M., J. T. Lewis, T. S. Bailey, and T. L. H. Donahue. Mechanical viability of a thermoplastic elastomer hydrogel as a soft tissue replacement material. J. Mech. Behav. Biomed. Mater. 79:341–347, 2018.CrossRefGoogle Scholar
  16. 16.
    Harris, M. L., P. Morberg, W. J. M. Bruce, and W. R. Walsh. An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film. J. Biomech. 32:951–958, 1999.CrossRefGoogle Scholar
  17. 17.
    Heckelsmiller, D. J., M. J. Rudert, T. E. Baer, D. R. Pedersen, D. C. Fredericks, and J. E. Goetz. Changes in joint contact mechanics in a large quadrupedal animal model after partial meniscectomy and a focal cartilage injury. J. Biomech. Eng. 139:54501, 2017.CrossRefGoogle Scholar
  18. 18.
    Herregodts, S., P. De Baets, J. Victor, and M. A. Verstraete. Use of Tekscan pressure sensors for measuring contact pressures in the human knee joint. Sustain. Constr. Des. 6(2):8–10, 2005.Google Scholar
  19. 19.
    Joshi, M. D., J. K. Suh, T. Marui, and S. L. Woo. Interspecies variation of compressive biomechanical properties of the meniscus. J. Biomed. Mater. Res. 29:823–828, 1995.CrossRefGoogle Scholar
  20. 20.
    Kon, E., G. Filardo, M. Tschon, M. Fini, G. Giavaresi, L. M. Reggiani, C. Chiari, S. Nehrer, I. Martin, D. M. Salter, L. Ambrosio, and M. Marcacci. Tissue engineering for total meniscal substitution: animal study in sheep model–results at 12 months. Tissue Eng. Part A 18:1573–1582, 2012.CrossRefGoogle Scholar
  21. 21.
    Koukoulias, N., T. Dimitriadis, E. Germanou, A. Papavasileiou, and C. Sinopidis. Meniscal scaffolds: a mini review. J. Surg. Surg. Res. 1:11–14, 2015.CrossRefGoogle Scholar
  22. 22.
    Lee-Shee, N. K., J. P. Dickey, and B. Hurtig. Contact mechanics of the ovine stifle during simulated early stance in gait: an in vitro study using robotics. Vet. Comp. Orthop. Traumatol. 20:70–72, 2007.CrossRefGoogle Scholar
  23. 23.
    Martinek, V., P. Ueblacker, K. Bräun, S. Nitschke, R. Mannhardt, K. Specht, B. Gansbacher, and A. B. Imhoff. Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement. Arch. Orthop. Trauma Surg. 126:228–234, 2006.CrossRefGoogle Scholar
  24. 24.
    Paxton, E. S., M. V. Stock, and R. H. Brophy. Meniscal repair versus partial meniscectomy: a systematic review comparing reoperation rates and clinical outcomes. J. Arthrosc. Relat. Surg. 27:1275–1288, 2011.CrossRefGoogle Scholar
  25. 25.
    Proffen, B. L., M. McElfresh, B. C. Fleming, and M. M. Murray. A comparative anatomical study of the human knee and six animal species. Knee 19:493–499, 2012.CrossRefGoogle Scholar
  26. 26.
    Radin, E. L., F. de Lamotte, and P. Maquet. Role of the menisci in the distribution of stress in the knee. Clin. Orthop. Relat. Res. 185:290–294, 1984.Google Scholar
  27. 27.
    Rijk, P. C. Meniscal allograft transplantation—Part I: background, results, graft selection and preservation, and surgical considerations. J. Arthrosc. Relat. Surg. 20:728–743, 2004.CrossRefGoogle Scholar
  28. 28.
    Scotti, C., M. Hirschmann, P. Antinolfi, I. Martin, and G. Peretti. Meniscus repair and regeneration: review on current methods and research potential. Eur. Cells Mater. 26:150–170, 2013.CrossRefGoogle Scholar
  29. 29.
    Shelton, W. R., and A. D. Dukes. Meniscus replacement with bone anchors: a surgical technique. Arthroscopy 10:324–327, 1994.CrossRefGoogle Scholar
  30. 30.
    Sun, J., S. Vijayavenkataraman, and H. Liu. An overview of scaffold design and fabrication technology for engineered knee meniscus. Materials (Basel) 10:1–19, 2017.Google Scholar
  31. 31.
    Takroni, T., L. Laouar, A. Adesida, J. A. W. Elliott, and N. M. Jomha. Anatomical study: comparing the human, sheep and pig knee meniscus. J. Exp. Orthop. 3:35, 2016.CrossRefGoogle Scholar
  32. 32.
    Tapper, J. E., S. Fukushima, H. Azuma, G. M. Thornton, J. L. Ronsky, N. G. Shrive, and C. B. Frank. Dynamic in vivo kinematics of the intact ovine stifle joint. J. Orthop. Res. 24:782–792, 2006.CrossRefGoogle Scholar
  33. 33.
    Taylor, W. R., R. M. Ehrig, M. O. Heller, H. Schell, P. Seebeck, and G. N. Duda. Tibio-femoral joint contact forces in sheep. J. Biomech. 39:791–798, 2006.CrossRefGoogle Scholar
  34. 34.
    Taylor, W. R., B. M. Poepplau, C. König, R. M. Ehrig, S. Zachow, G. N. Duda, and M. O. Heller. The medial-lateral force distribution in the ovine stifle joint during walking. J. Orthop. Res. 29:567–571, 2011.CrossRefGoogle Scholar
  35. 35.
    von Lewinski, G., C. Stukenborg-Colsman, S. Ostermeier, and C. Hurschler. Experimental measurement of tibiofemoral contact area in a meniscectomized ovine model using a resistive pressure measuring sensor. Ann. Biomed. Eng. 34:1607–1614, 2006.CrossRefGoogle Scholar
  36. 36.
    Walker, P. S., and M. J. Erkman. The role of the menisci in force transmission across the knee. Clin. Orthop. Relat. Res. 109:184–192, 1975.CrossRefGoogle Scholar
  37. 37.
    Welsing, R. T. C., T. G. van Tienen, N. Ramrattan, R. Heijkants, A. J. Schouten, R. P. H. Veth, and P. Buma. Effect on tissue differentiation and articular cartilage degradation of a polymer meniscus implant: a 2-year follow-up study in dogs. Am. J. Sports Med. 36:1978–1989, 2008.CrossRefGoogle Scholar
  38. 38.
    Woodmass, J. M., N. R. Johnson, B. A. Levy, M. J. Stuart, and A. J. Krych. Lateral meniscus allograft transplantation: the bone plug technique. Arthrosc. Tech. 2017. Scholar
  39. 39.
    Zur, G., E. Linder-Ganz, J. J. Elsner, J. Shani, O. Brenner, G. Agar, E. B. Hershman, S. P. Arnoczky, F. Guilak, and A. Shterling. Chondroprotective effects of a polycarbonate-urethane meniscal implant: histopathological results in a sheep model. Knee Surg. Sport. Traumatol. Arthrosc. 19:255–263, 2011.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Kristine M. Fischenich
    • 1
  • Hannah M. Pauly
    • 1
  • Jackson T. Lewis
    • 1
  • Travis S. Bailey
    • 1
    • 2
    • 3
  • Tammy L. Haut Donahue
    • 1
    • 4
    Email author
  1. 1.School of Biomedical EngineeringColorado State UniversityFort CollinsUSA
  2. 2.Department of Chemical and Biological EngineeringColorado State UniversityFort CollinsUSA
  3. 3.Department of ChemistryColorado State UniversityFort CollinsUSA
  4. 4.Department of Biomedical EngineeringUniversity of MassachusettsAmherstUSA

Personalised recommendations