Annals of Biomedical Engineering

, Volume 46, Issue 11, pp 1896–1910 | Cite as

Dynamics of Intrinsic Glucose Uptake Kinetics in Human Mesenchymal Stem Cells During Chondrogenesis

  • Yi Zhong
  • Mostafa Motavalli
  • Kuo-Chen Wang
  • Arnold I. Caplan
  • Jean F. Welter
  • Harihara BaskaranEmail author


Chondrogenesis of human mesenchymal stem cells (hMSCs) is an important biological process in many applications including cartilage tissue engineering. We investigated the glucose uptake characteristics of aggregates of hMSCs undergoing chondrogenesis over a 3-week period both experimentally and by using a mathematical model. Initial concentrations of glucose in the medium were varied from 1 to 4.5 g/L to mimic limiting conditions and glucose uptake profiles were obtained. A reaction–diffusion mathematical model was implemented and solved to estimate kinetic parameters. Experimental glucose uptake rates increased with culture time for aggregates treated with higher initial glucose concentrations (3 and 4.5 g/L), whereas they decreased or remained constant for those treated with lower initial glucose concentrations (1 and 2 g/L). Lactate production rate increased by as much as 40% for aggregates treated with higher initial glucose concentrations (2, 3 and 4.5 g/L), whereas it remained constant for those treated with 1 g/L initial glucose concentration. The estimated DNA-normalized maximum glucose uptake rate decreased by a factor of 9 from day 0–2 (12.5 mmol/s/g DNA) to day 6–8 (1.5 mmol/s/g DNA), after which it started to increase. On day 18–20, its value (17.5 mmol/s/g DNA) was about 11 times greater than its lowest value. Further, the extracellular matrix levels of aggregates at day 14 and day 21 correlated with their overall glucose uptake and lactate production. The results suggest that during chondrogenesis, for optimal results, cells require increasing amounts of glucose. Our results also suggest that diffusion limitations play an important role in glucose uptake even in the smaller size aggregate model of chondrogenesis. Further, the results indicate that glucose uptake or lactate production can be a tool for predicting the end quality of tissue during the process of chondrogenesis. The estimated kinetic parameters can be used to model glucose requirements in cartilage tissue engineering applications.


Cartilage Aggregate cultures Mass transport Glucose consumption Diffusional limitation Michaelis–Menten kinetics Lactate production Mathematical modeling 



The authors would like to thank Amad Awadallah and Dr. Don Lennon at the Skeletal Research Center, Department of Biology, Case Western Reserve University for help with histology and hMSC isolation respectively. This work is supported in part by a grant from the National Institutes of Health (EB021911). Dr. Motavalli is supported by a fellowship from the Case School of Engineering, College of Arts and Sciences and School of Medicine, Case Western Reserve University.

Conflict of interest

The authors declare no conflicts of interests related to the work performed in the manuscript.

Supplementary material

10439_2018_2067_MOESM1_ESM.docx (463 kb)
Supplementary material 1 (DOCX 462 kb)


  1. 1.
    Ballock, R. T., and A. H. Reddi. Thyroxine is the serum factor that regulates morphogenesis of columnar cartilage from isolated chondrocytes in chemically defined medium. J. Cell Biol. 126:1311–1318, 1994.CrossRefGoogle Scholar
  2. 2.
    Bizzotto, R., A. Natali, A. Gastaldelli, E. Muscelli, M. Krssak, A. Brehm, M. Roden, E. Ferrannini, and A. Mari. Glucose uptake saturation explains glucose kinetics profiles measured by different tests. Am. J. Physiol. Endocrinol. Metab. 311:E346–E357, 2016.CrossRefGoogle Scholar
  3. 3.
    Brown, D. A., W. R. MacLellan, H. Laks, J. C. Dunn, B. M. Wu, and R. E. Beygui. Analysis of oxygen transport in a diffusion-limited model of engineered heart tissue. Biotechnol. Bioeng. 97:962–975, 2007.CrossRefGoogle Scholar
  4. 4.
    Caplan, A. I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell Physiol. 213:341–347, 2007.CrossRefGoogle Scholar
  5. 5.
    Caplan, A. I., and S. P. Bruder. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol. Med. 7:259–264, 2001.CrossRefGoogle Scholar
  6. 6.
    Carrino, D. A., J. L. Arias, and A. I. Caplan. A spectrophotometric modification of a sensitive densitometric safranin-o assay for glycosaminoglycans. Biochem. Int. 24:485–495, 1991.Google Scholar
  7. 7.
    Cigan, A. D., K. M. Durney, R. J. Nims, G. Vunjak-Novakovic, C. T. Hung, and G. A. Ateshian. Nutrient channels aid the growth of articular surface-sized engineered cartilage constructs. Tissue Eng. Part A 22:1063–1074, 2016.CrossRefGoogle Scholar
  8. 8.
    Denko, C. W., and C. J. Malemud. Metabolic disturbances and synovial joint responses in osteoarthritis. Front. Biosci. 4:D686–D693, 1999.CrossRefGoogle Scholar
  9. 9.
    Dos Santos, F., P. Z. Andrade, J. S. Boura, M. M. Abecasis, C. L. da Silva, and J. M. Cabral. Ex vivo expansion of human mesenchymal stem cells: a more effective cell proliferation kinetics and metabolism under hypoxia. J. Cell Physiol. 223:27–35, 2010.Google Scholar
  10. 10.
    Ham, K. D., T. R. Oegema, R. F. Loeser, and C. S. Carlson. Effects of long-term estrogen replacement therapy on articular cartilage igfbp-2, igfbp-3, collagen and proteoglycan levels in ovariectomized cynomolgus monkeys. Osteoarthritis Cartil. 12:160–168, 2004.CrossRefGoogle Scholar
  11. 11.
    Haynesworth, S. E., J. Goshima, V. M. Goldberg, and A. I. Caplan. Characterization of cells with osteogenic potential from human marrow. Bone 13:81–88, 1992.CrossRefGoogle Scholar
  12. 12.
    Ignat’eva, N. Y., N. A. Danilov, S. V. Averkiev, M. V. Obrezkova, V. V. Lunin, and E. N. Sobol’. Determination of hydroxyproline in tissues and the evaluation of the collagen content of the tissues. J. Anal. Chem. 62:51–57, 2007.CrossRefGoogle Scholar
  13. 13.
    Janakiraman, V., K. Mathur, and H. Baskaran. Optimal planar flow network designs for tissue engineered constructs with built-in vasculature. Ann. Biomed. Eng. 35:337–347, 2007.CrossRefGoogle Scholar
  14. 14.
    Johnstone, B., T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238:265–272, 1998.CrossRefGoogle Scholar
  15. 15.
    Lane, J. M., C. T. Brighton, and B. J. Menkowitz. Anaerobic and aerobic metabolism in articular cartilage. J. Rheumatol. 4:334–342, 1977.Google Scholar
  16. 16.
    Lee, R. B., and J. P. Urban. Evidence for a negative pasteur effect in articular cartilage. Biochem. J. 321(Pt 1):95–102, 1997.CrossRefGoogle Scholar
  17. 17.
    Lee, R. B., and J. P. Urban. Functional replacement of oxygen by other oxidants in articular cartilage. Arthritis Rheum. 46:3190–3200, 2002.CrossRefGoogle Scholar
  18. 18.
    Lee, R. B., R. J. Wilkins, S. Razaq, and J. P. Urban. The effect of mechanical stress on cartilage energy metabolism. Biorheology 39:133–143, 2002.Google Scholar
  19. 19.
    Lennon, D. P., and A. I. Caplan. Isolation of human marrow-derived mesenchymal stem cells. Exp. Hematol. 34:1604–1605, 2006.CrossRefGoogle Scholar
  20. 20.
    Lennon, D. P., S. E. Haynesworth, S. P. Bruder, N. Jaiswal, and A. I. Caplan. Human and animal mesenchymal progenitor cells from bone marrow: identification of serum for optimal selection and proliferation. In Vitro Cell. Dev. Biol. Anim. 32:602–611, 1996.CrossRefGoogle Scholar
  21. 21.
    Lewko, B., E. Bryl, J. M. Witkowski, E. Latawiec, M. Golos, N. Endlich, B. Hahnel, C. Koksch, S. Angielski, W. Kriz, and J. Stepinski. Characterization of glucose uptake by cultured rat podocytes. Kidney Blood Press. Res. 28:1–7, 2005.CrossRefGoogle Scholar
  22. 22.
    Maroudas, A. Distribution and diffusion of solutes in articular cartilage. Biophys. J. 10:365–379, 1970.CrossRefGoogle Scholar
  23. 23.
    Mobasheri, A., S. J. Vannucci, C. A. Bondy, S. D. Carter, J. F. Innes, M. F. Arteaga, E. Trujillo, I. Ferraz, M. Shakibaei, and P. Martin-Vasallo. Glucose transport and metabolism in chondrocytes: a key to understanding chondrogenesis, skeletal development and cartilage degradation in osteoarthritis. Histol. Histopathol. 17:1239–1267, 2002.Google Scholar
  24. 24.
    Okma-Keulen, P., and M. Hopman-Rock. The onset of generalized osteoarthritis in older women: a qualitative approach. Arthritis Rheum. 45:183–190, 2001.CrossRefGoogle Scholar
  25. 25.
    Passonneau, J. V., and O. H. Lowry. Enzymatic analysis a practical guide. New York: Humana Press, 1993.CrossRefGoogle Scholar
  26. 26.
    Pathi, P., T. Ma, and B. R. Locke. Role of nutrient supply on cell growth in bioreactor design for tissue engineering of hematopoietic cells. Biotechnol. Bioeng. 89:743–758, 2005.CrossRefGoogle Scholar
  27. 27.
    Pattappa, G., H. K. Heywood, J. D. de Bruijn, and D. A. Lee. The metabolism of human mesenchymal stem cells during proliferation and differentiation. J. Cell Physiol. 226:2562–2570, 2011.CrossRefGoogle Scholar
  28. 28.
    Pattappa, G., S. D. Thorpe, N. C. Jegard, H. K. Heywood, J. D. de Bruijn, and D. A. Lee. Continuous and uninterrupted oxygen tension influences the colony formation and oxidative metabolism of human mesenchymal stem cells. Tissue Eng. Part C Methods 19:68–79, 2013.CrossRefGoogle Scholar
  29. 29.
    Penick, K. J., L. A. Solchaga, and J. F. Welter. High-throughput aggregate culture system to assess the chondrogenic potential of mesenchymal stem cells. Biotechniques 39:687–691, 2005.CrossRefGoogle Scholar
  30. 30.
    Perriott, L. M., T. Kono, R. R. Whitesell, S. M. Knobel, D. W. Piston, D. K. Granner, A. C. Powers, and J. M. May. Glucose uptake and metabolism by cultured human skeletal muscle cells: Rate-limiting steps. Am. J. Physiol. Endocrinol. Metab. 281:E72–E80, 2001.CrossRefGoogle Scholar
  31. 31.
    Ponticiello, M. S., R. M. Schinagl, S. Kadiyala, and F. P. Barry. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J. Biomed. Mater. Res. 52:246–255, 2000.CrossRefGoogle Scholar
  32. 32.
    Raghunand, N., and B. E. Dale. Alteration of glucose consumption kinetics with progression of baculovirus infection in spodoptera frugiperda cells. Appl. Biochem. Biotechnol. 80:231–242, 1999.CrossRefGoogle Scholar
  33. 33.
    Rosenberg, L. Chemical basis for the histological use of safranin o in the study of articular cartilage. J. Bone Joint Surg. Am. 53:69–82, 1971.CrossRefGoogle Scholar
  34. 34.
    Rosenbloom, A. L., and J. H. Silverstein. Connective tissue and joint disease in diabetes mellitus. Endocrinol. Metab. Clin. N. Am. 25:473–483, 1996.CrossRefGoogle Scholar
  35. 35.
    Solchaga, L. A., K. Penick, V. M. Goldberg, A. I. Caplan, and J. F. Welter. Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells. Tissue Eng. Part A 16:1009–1019, 2010.CrossRefGoogle Scholar
  36. 36.
    Solchaga, L. A., K. Penick, J. D. Porter, V. M. Goldberg, A. I. Caplan, and J. F. Welter. Fgf-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J. Cell Physiol. 203:398–409, 2005.CrossRefGoogle Scholar
  37. 37.
    Solchaga, L. A., K. J. Penick, and J. F. Welter. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: tips and tricks. Methods Mol. Biol. 698:253–278, 2011.CrossRefGoogle Scholar
  38. 38.
    Somoza, R. A., D. Correa, I. Labat, H. Sternberg, M. E. Forrest, A. M. Khalil, M. D. West, P. J. Tesar, and A. I. Caplan. Transcriptome-wide analyses of human neonatal articular cartilage and human mesenchymal stem cells (hmscs)-derived cartilage provide a new molecular target for evaluating engineered cartilage. Tissue Eng. Part A 24:3–4, 2017.Google Scholar
  39. 39.
    Suhaimi, H., S. Wang, and D. B. Das. Glucose diffusivity in cell culture medium. Chem. Eng. J. 269:323–327, 2015.CrossRefGoogle Scholar
  40. 40.
    Ultman, J. S., H. Baskaran, and G. M. Saidel. Biomedical Mass Transport and Chemical Reaction: Physicochemical Principles and Mathematical Modeling. New York: Wiley, 2016.Google Scholar
  41. 41.
    Webber, M. J., O. F. Khan, S. A. Sydlik, B. C. Tang, and R. Langer. A perspective on the clinical translation of scaffolds for tissue engineering. Ann. Biomed. Eng. 43:641–656, 2015.CrossRefGoogle Scholar
  42. 42.
    Weber, C., D. Freimark, R. Portner, P. Pino-Grace, S. Pohl, C. Wallrapp, P. Geigle, and P. Czermak. Expansion of human mesenchymal stem cells in a fixed-bed bioreactor system based on non-porous glass carrier—part a: Inoculation, cultivation, and cell harvest procedures. Int. J. Artif. Organs 33:512–525, 2010.CrossRefGoogle Scholar
  43. 43.
    Weber, C., D. Freimark, R. Portner, P. Pino-Grace, S. Pohl, C. Wallrapp, P. Geigle, and P. Czermak. Expansion of human mesenchymal stem cells in a fixed-bed bioreactor system based on non-porous glass carrier—part b: modeling and scale-up of the system. Int. J. Artif. Organs 33:782–795, 2010.CrossRefGoogle Scholar
  44. 44.
    Welter, J. F., L. A. Solchaga, and K. J. Penick. Simplification of aggregate culture of human mesenchymal stem cells as a chondrogenic screening assay. Biotechniques 42(732):734–737, 2007.Google Scholar
  45. 45.
    Woessner, Jr., J. F. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch. Biochem. Biophys. 93:440–447, 1961.CrossRefGoogle Scholar
  46. 46.
    Yoo, J. U., T. S. Barthel, K. Nishimura, L. Solchaga, A. I. Caplan, V. M. Goldberg, and B. Johnstone. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J. Bone Joint Surg. Am. 80:1745–1757, 1998.CrossRefGoogle Scholar
  47. 47.
    Zhao, F., P. Pathi, W. Grayson, Q. Xing, B. R. Locke, and T. Ma. Effects of oxygen transport on 3-d human mesenchymal stem cell metabolic activity in perfusion and static cultures: experiments and mathematical model. Biotechnol. Prog. 21:1269–1280, 2005.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringCase Western Reserve UniversityClevelandUSA
  2. 2.Department of BiologyThe Skeletal Research Center, Case Western Reserve UniversityClevelandUSA
  3. 3.Department of Chemical and Biomolecular EngineeringCase Western Reserve UniversityClevelandUSA
  4. 4.Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve UniversityClevelandUSA

Personalised recommendations