Advertisement

Annals of Biomedical Engineering

, Volume 46, Issue 10, pp 1676–1685 | Cite as

In-Human Robot-Assisted Retinal Vein Cannulation, A World First

  • Andy Gijbels
  • Jonas Smits
  • Laurent Schoevaerdts
  • Koen Willekens
  • Emmanuel B. Vander Poorten
  • Peter Stalmans
  • Dominiek Reynaerts
Medical Robotics

Abstract

Retinal Vein Occlusion (RVO) is a blinding disease caused by one or more occluded retinal veins. Current treatment methods only focus on symptom mitigation rather than targeting a solution for the root cause of the disorder. Retinal vein cannulation is an experimental eye surgical procedure which could potentially cure RVO. Its goal is to dissolve the occlusion by injecting an anticoagulant directly into the blocked vein. Given the scale and the fragility of retinal veins on one end and surgeons’ limited positioning precision on the other, performing this procedure manually is considered to be too risky. The authors have been developing robotic devices and instruments to assist surgeons in performing this therapy in a safe and successful manner. This work reports on the clinical translation of the technology, resulting in the world-first in-human robot-assisted retinal vein cannulation. Four RVO patients have been treated with the technology in the context of a phase I clinical trial. The results show that it is technically feasible to safely inject an anticoagulant into a \(100\,{\mu} {\rm m}\)-thick retinal vein of an RVO patient for a period of 10 min with the aid of the presented robotic technology and instrumentation.

Keywords

Surgical robot Retinal vein occlusion Retinal endovascular surgery REVS Eye surgery Microsurgery 

Notes

Acknowledgments

This research was funded by the University of Leuven, an Innovation Mandate of Flanders Innovation & Entrepreneurship (HBC.5016.0250), an SB Fellowship of the Research Foundation Flanders (1S41517N) and Agentschap voor Innovatie door Wetenschap en Technologie (O&O 145046). Thrombogenics sponsored both the in-vivo preclinical study and the phase I clinical study.

References

  1. 1.
    Das, H., T. I. M. Ohm, C. Boswell, R. O. B. Steele, and G. Rodriguez. Robot-Assisted Microsurgery Development at JPL. In: Information Technologies in Medicine, Vol. II, pp. 85–99, 2001.Google Scholar
  2. 2.
    Donald, T. Robot assists with injections for RVO. Retina Today, pp. 59–61, 2017.Google Scholar
  3. 3.
    Feltgen, N., B. Junker, H. Agostini, and L. L. Hansen. Retinal Endovascular Lysis in Ischemic Central Retinal Vein Occlusion. One-Year Results of a Pilot Study. Ophthalmology 114:716–724, 2007.CrossRefGoogle Scholar
  4. 4.
    Fleming, I., M. Balicki, J. Koo, I. Iordachita, B. Mitchell, J. Handa, G. Hager, and R. Taylor. Cooperative robot assistant for retinal microsurgery. In: Medical Image Computing and Computer-Assisted Intervention MICCAI 2008. MICCAI 2008. Lecture Notes in Computer Science, pp. 543–550, 2008.Google Scholar
  5. 5.
    Gijbels, A., D. Reynaerts, and E. B. Vander Poorten. Design of 4-DOF parallelogram-based RCM mechanisms with a translational DOF implemented distal from the end-effector. In: Advances on Theory and Practice of Robots and Manipulators: Proceedings of Romansy 2014 XX CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators, pp. 103–111, 2014.Google Scholar
  6. 6.
    Gijbels, A., E. B. Vander Poorten, B. Gorissen, A. Devreker, P. Stalmans, and D. Reynaerts. Experimental validation of a robotic comanipulation and telemanipulation system for retinal surgery. In: 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 144–150, 2014.Google Scholar
  7. 7.
    Gijbels, A., E. B. Vander Poorten, P. Stalmans, and D. Reynaerts. Development and experimental validation of a force sensing needle for robotically assisted retinal vein cannulations. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2270–2276, 2015.Google Scholar
  8. 8.
    Gijbels, A., E. B. Vander Poorten, P. Stalmans, H. Van Brussel, and D. Reynaerts. Design of a teleoperated robotic system for retinal surgery. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2357–2363, 2014.Google Scholar
  9. 9.
    Gijbels, A., K. Willekens, L. Esteveny, P. Stalmans, D. Reynaerts, and E. B. Vander Poorten. Towards a clinically applicable robotic assistance system for retinal vein cannulation. In: 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 284–291, 2016.Google Scholar
  10. 10.
    He, X., D. Roppenecker, D. Gierlach, M. Balicki, K. Olds, P. Gehlbach, J. Handa, R. Taylor, and I. Iordachita. Toward clinically applicable steady-hand eye robot for vitreoretinal surgery. In: Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition (IMECE2012), 88384, pp. 145–153, 2012.Google Scholar
  11. 11.
    Kummer, M. P., J. J. Abbott, B. E. Kratochvil, R. Borer, A. Sengul, and B. J. Nelson. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. In: 2010 IEEE International Conference on Robotics and Automation, pp. 1610–1616, 2010.Google Scholar
  12. 12.
    Maclachlan, R. A., B. C. Becker, J. C. Tabar, G. W. Podnar, L. A. Lobes, C. N. Riviere, J. Cuevas Tabares, G. W. Podnar, L. A. Lobes, and C. N. Riviere. Micron: an actively stabilized handheld tool for microsurgery. IEEE Trans. Robot. 28:195–212, 2012.Google Scholar
  13. 13.
    Meenink, H. C. M., R. Hendrix, P. C. J. N. Rosielle, M. Steinbuch, H. Nijmeijer, and M. De Smet. A master-slave robot for vitreo-retinal eye surgery. In: Proceedings of the euspen International Conference, June, pp. 3–6. 2010.Google Scholar
  14. 14.
    Meenink, H. C. M., R. Hendrix, P. C. J. N. Rosielle, M. Steinbuch, H. Nijmeijer, and M. De Smet. A master-slave robot for vitreo-retinal eye surgery. In: Proceedings of the euspen International Conference, June, pp. 3–6, 2010.Google Scholar
  15. 15.
    Noda, Y., Y. Ida, S. Tanaka, T. Toyama, M. F. Roggia, Y. Tamaki, N. Sugita, M. Mitsuishi, and T. Ueta. Impact of Robotic Assistance on Precision of Vitreoretinal Surgical Procedures. PLoS ONE 8:e54116, 2013.CrossRefGoogle Scholar
  16. 16.
    Riviere, C., and P. Jensen. A study of instrument motion in retinal microsurgery. In: Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 59–60, 2000.Google Scholar
  17. 17.
    Rogers, S., R. L. Mcintosh, B. Grad, D. Journ, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, and T. Y. Wong. The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia. Population Studies, vol. 117, pp. 1–14, 2011.Google Scholar
  18. 18.
    Tsui, I., A. Tsirbas, C. W. Mango, S. D. Schwartz, and J.-P. Hubschman. Robotic surgery in ophthalmology. In: Robot Surgery, edited by S. H. Baik, Chapter 10, Rijeka: InTech2010.Google Scholar
  19. 19.
    Wei, W., R. Goldman, N. Simaan, H. Fine, and S. Chang. Design and theoretical evaluation of micro-surgical manipulators for orbital manipulation and intraocular dexterity. In: 2007 IEEE International Conference on Robotics and Automation, April, pp. 3389–3395, 2007.Google Scholar
  20. 20.
    Weiss, J. N., T. E. D. C. S. Group, W. Green, C. Chan, G. Hutchins, J. Terry, A. Vine, M. Samama, B. Allf, E. de Juan, G. Steinkamp, L. Hattenbach, I. Scharrer, and C. Ohrloff. Treatment of central retinal vein occlusion by injection of tissue plasminogen activator into a retinal vein. Am. J. Ophthalmol. 126:142–144, 1998.CrossRefGoogle Scholar
  21. 21.
    Willekens, K., A. Gijbels, L. Schoevaerdts, L. Esteveny, T. Janssens, J. H. M. Feyen, C. Meers, D. Reynaerts, E. B. Vander Poorten, and P. Stalmans. Robot-assisted retinal vein cannulation in an in vivo porcine retinal vein occlusion model. Acta Ophthalmol. 95:270–275, 2017.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Andy Gijbels
    • 1
  • Jonas Smits
    • 1
  • Laurent Schoevaerdts
    • 1
  • Koen Willekens
    • 2
  • Emmanuel B. Vander Poorten
    • 1
  • Peter Stalmans
    • 2
  • Dominiek Reynaerts
    • 1
  1. 1.Department of Mechanical EngineeringKU Leuven - University of LeuvenHeverleeBelgium
  2. 2.Department of OphthalmologyKU Leuven - University Hospitals LeuvenLeuvenBelgium

Personalised recommendations