Advertisement

Annals of Biomedical Engineering

, Volume 46, Issue 10, pp 1437–1449 | Cite as

Design, Modelling and Teleoperation of a 2 mm Diameter Compliant Instrument for the da Vinci Platform

  • P. Francis
  • K. W. Eastwood
  • V. Bodani
  • T. Looi
  • J. M. Drake
Medical Robotics

Abstract

This work explores the feasibility of creating and accurately controlling an instrument for robotic surgery with a 2 mm diameter and a three degree-of-freedom (DoF) wrist which is compatible with the da Vinci platform. The instrument’s wrist is composed of a two DoF bending notched-nitinol tube pattern, for which a kinematic model has been developed. A base mechanism for controlling the wrist is designed for integration with the da Vinci Research Kit. A basic teleoperation task is successfully performed using two of the miniature instruments. The performance and accuracy of the instrument suggest that creating and accurately controlling a 2 mm diameter instrument is feasible and the design and modelling proposed in this work provide a basis for future miniature instrument development.

Keywords

Surgical robotics Dexterous manipulators Compliant joints Miniature instruments 

Supplementary material

Supplementary material 1 (MP4 192417 kb)

References

  1. 1.
    Bekeny, J. R., P. J. Swaney, R. J. Webster, III, P. T. Russell, and K. D. Weaver. Forces applied at the skull base during transnasal endoscopic transsphenoidal pituitary tumor excision. J. Neurol. Surg. B 74:337–341, 2013.CrossRefGoogle Scholar
  2. 2.
    Fichera, L., N. P. Dillon, D. Zhang, I. S. Godage, M. A. Siebold, B. I. Hartley, J. H. Noble, P. T. Russell, R. F. Labadie, and R. J. Webster. Through the eustachian tube and beyond: a new miniature robotic endoscope to see into the middle ear. IEEE Robot. Autom. Lett. 2(3):1488–1494, 2017.CrossRefGoogle Scholar
  3. 3.
    Francis, P., K. W. Eastwood, V. Bodani, K. Price, K. Upadhyaya, D. Podolsky, H. Azimian, T. Looi, and J. Drake. Miniaturized instruments for the da Vinci Research Kit: design and implementation of custom continuum tools. IEEE Robot. Autom. Mag. 24(2):24–33, 2017.CrossRefGoogle Scholar
  4. 4.
    Francis, P., K. W. Eastwood, V. Bodani, T. Looi, and J. M. Drake. Design and kinematic modelling of a miniature compliant wrist for the da Vinci Research Kit. In: The Hamlyn Symposium on Medical Robotics, 2017, pp. 41–42.Google Scholar
  5. 5.
    Haga, Y., Y. Muyari, S. Goto, T. Matsunaga, and M. Esashi. Development of minimally invasive medical tools using laser processing on cylindrical substrates. Electr. Eng. Jpn 176(1):65–74, 2011.CrossRefGoogle Scholar
  6. 6.
    Harada, K., Z. Bo, S. Enosawa, T. Chiba, and M. G. Fujie. Bending laser manipulator for intrauterine surgery and viscoelastic model of fetal rat tissue. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, pp. 611–616.Google Scholar
  7. 7.
    Intuitive Surgical Annual Report 2017, 2017.Google Scholar
  8. 8.
    Kazanzides, P., Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, and S. P. DiMaio. An open-source research kit for the da Vinci® Surgical System. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 6434–6439.Google Scholar
  9. 9.
    Marcus, H. J., A. Hughes-Hallett, T. P. Cundy, G.-Z. Yang, A. Darzi, and D. Nandi. Da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety. Neurosurg. Rev. 38(2):367–371, 2015.CrossRefGoogle Scholar
  10. 10.
    Marcus, H. J., K. Zareinia, L. S. Gan, F. W. Yang, S. Lama, G.-Z. Yang, and G. R. Sutherland. Forces exerted during microneurosurgery: a cadaver study. Int. J. Med. Robot. Comput. Assist. Surg. 10(2):251–256, 2014.CrossRefGoogle Scholar
  11. 11.
    McLeod, I. K., E. A. Mair, and P. C. Melder. Potential applications of the da Vinci minimally invasive surgical robotic system in otolaryngology. Ear Nose Throat J. 84(8):483–487, 2005.Google Scholar
  12. 12.
    Meehan, J. J., and A. Sandler. Robotic repair of a Bochdalek congenital diaphragmatic hernia in a small neonate: robotic advantages and limitations. J. Pediatr. Surg. 2007.  https://doi.org/10.1016/j.jpedsurg.2007.06.013.Google Scholar
  13. 13.
    Moorthy, K., Y. Munz, A. Dosis, J. Hernandez, S. Martin, F. Bello, T. Rockall, and A. Darzi. Dexterity enhancement with robotic surgery. Surg. Endosc. 18(5):790–795, 2004.CrossRefGoogle Scholar
  14. 14.
    Peirs, J., H. Van Brussel, D. Reynaerts, and G. De Gersem. A flexible distal tip with two degrees of freedom for enhanced dexterity in endoscopic robot surgery. In: The 13th Micromechanics Europe Workshop, 2002, pp. 271–274.Google Scholar
  15. 15.
    Ryu, S. C., P. Renaud, R. J. Black, B. L. Daniel, and M. R. Cutkosky. Feasibility study of an optically actuated MR-compatible active needle. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp. 2564–2569.Google Scholar
  16. 16.
    Song, J., B. Gonenc, J. Guo, and I. Iordachita. Intraocular snake integrated with the steady-hand eye robot for assisted retinal microsurgery. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 6724–6729.Google Scholar
  17. 17.
    Swaney, P. J., P. A. York, H. B. Gilbert, J. Burgner-Kahrs, and R. J. Webster, III. Design, fabrication, and testing of a needle-sized wrist for surgical instruments. J. Med. Device 2017.  https://doi.org/10.1115/1.403457.Google Scholar
  18. 18.
    York, P. A., P. J. Swaney, H. B. Gilbert, and R. J. Webster. A wrist for needle-sized surgical robots. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 1776–1781.Google Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Centre for Image-Guided Innovation & Therapeutic InterventionThe Hospital for Sick ChildrenTorontoCanada

Personalised recommendations