Advertisement

Annals of Biomedical Engineering

, Volume 46, Issue 8, pp 1091–1100 | Cite as

Tissue Identification in a Porcine Model by Differential Ion Mobility Spectrometry Analysis of Surgical Smoke

  • Anton Kontunen
  • Markus Karjalainen
  • Jukka Lekkala
  • Antti Roine
  • Niku Oksala
Article

Abstract

Electrosurgery is widely used in various surgical operations. When tissue is cut with high-frequency current, the cell contents at the incision area evaporate and together with water and possible soot particles, form surgical smoke. The smoke contains cell metabolites, and therefore, possible biomarkers for cancer or bacterial infection. Thus, the analysis of surgical smoke could be used in intraoperative medical diagnostics. We present a method that can be used to detect the characteristics of various tissue types by means of differential ion mobility spectrometry (DMS) analysis of surgical smoke. We used our method to test tissue identification with ten different porcine tissues. We classified the DMS responses with cross-validated linear discriminant analysis models. The classification accuracy in a measurement set with ten tissue types was 95%. The presented tissue identification by DMS analysis of surgical smoke is a proof-of-concept, which opens the possibility to research the method in diagnosing human tissues and diseases in the future.

Keywords

FAIMS Electrosurgery LDA VOC 

Abbreviations

DMS

Differential ion mobility spectrometry

FAIMS

High-field asymmetric waveform ion mobility spectrometry

LDA

Linear discriminant analysis

REIMS

Rapid evaporative ionization mass spectrometry

MS

Mass spectrometry

LOOCV

Leave-one-out cross-validation

ATAS

Automatic tissue analysis system

VRF

Voltage amplitude of the asymmetric waveform

VC

Voltage of the DC compensation field

VOC

Volatile organic compound

Notes

Acknowledgments

This study was supported by grants from the following foundations: Finnish Cultural Foundation, South Savo Regional fund, Finnish Foundation for Technology Promotion (TES), Tampereen Tuberkuloosisäätiö (Tampere Tuberculosis Foundation), Emil Aaltonen foundation and Pirkanmaan sairaanhoitopiiri (PSHP) Grants 9s045, 151B03, 9T044, 9U042 and 150618. The study material used in the research was slaughterhouse offal. Ethical approval from the Ethics Committee of the Tampere Region was not needed for conducting this research, as confirmed from the committee itself. Authors Markus Karjalainen, Antti Roine, Niku Oksala, and Jukka Lekkala are shareholders of Olfactomics Ltd (www.olfactomics.fi), a company developing applications for eNose technology. The authors would like to thank D.Sc. Ville Rantanen, D.Sc. Pekka Kumpulainen, and Assistant Professor Antti Vehkaoja for their comments and contributions to the final manuscript.

References

  1. 1.
    Allweis, T. M., Z. Kaufman, S. Lelcuk, I. Pappo, T. Karni, S. Schneebaum, R. Spector, A. Schindel, D. Hershko, M. Zilberman, J. Sayfan, Y. Berlin, A. Hadary, O. Olsha, H. Paran, M. Gutman, and M. Carmon. A prospective, randomized, controlled, multicenter study of a real-time, intraoperative probe for positive margin detection in breast-conserving surgery. Am. J. Surg. 196:483–489, 2008.CrossRefPubMedGoogle Scholar
  2. 2.
    Baggish, M. S., R. F. Valle, and H. Guedj. Hysteroscopy: Visual Perspectives of Uterine Anatomy, Physiology and Pathology. London: Lippincott Williams & Wilkins, 2007, 125 pp.Google Scholar
  3. 3.
    Balog, J., D. Perenyi, C. Guallar-Hoyas, A. Egri, S. D. Pringle, S. Stead, O. P. Chevallier, C. T. Elliott, and Z. Takats. Identification of the species of origin for meat products by rapid evaporative ionization mass spectrometry. J. Agric. Food Chem. 64:4793–4800, 2016.CrossRefPubMedGoogle Scholar
  4. 4.
    Balog, J., L. Sasi-Szabó, J. Kinross, M. R. Lewis, L. J. Muirhead, K. Veselkov, R. Mirnezami, B. Dezso, L. Damjanovich, A. Darzi, J. K. Nicholson, and Z. Takáts. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci. Transl. Med. 5:194ra93, 2013.CrossRefPubMedGoogle Scholar
  5. 5.
    Balog, J., T. Szaniszló, K.-C. Schaefer, J. Denes, A. Lopata, L. Godorhazy, D. Szalay, L. Balogh, L. Sasi-Szabó, M. Toth, and Z. Takáts. Identification of biological tissues by rapid evaporative ionization mass spectrometry. Anal. Chem. 82:7343–7350, 2010.CrossRefPubMedGoogle Scholar
  6. 6.
    Bardin-Monnier, N., and D. Thomas. Initial Pressure Drop for Fibrous Media BT—Aerosol Filtration. Amsterdam: Elsevier, 2017, pp. 49–78.Google Scholar
  7. 7.
    Eiceman, G. A., Z. Karpas, and H. H. Hill, Jr. Ion Mobility Spectrometry. CRC Press, 2013, pp. 1–293.Google Scholar
  8. 8.
    Izenman, A. J. Recursive partitioning and tree-based methods BT. In: Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning, edited by A. J. Izenman. New York: Springer New York, 2008, pp. 281–314.  https://doi.org/10.1007/978-0-387-78189-1_9.
  9. 9.
    Kupstas, A., W. Ibrar, R. D. Hayward, D. Ockner, C. Wesen, and J. Falk. A novel modality for intraoperative margin assessment and its impact on re-excision rates in breast conserving surgery. Am. J. Surg. 2017.  https://doi.org/10.1016/j.amjsurg.2017.11.023.PubMedGoogle Scholar
  10. 10.
    Munro, M. G. Fundamentals of electrosurgery, Part I: principles of radiofrequency energy for surgery BT. In: The SAGES Manual on the Fundamental Use of Surgical Energy (FUSE), edited by L. Feldman, P. Fuchshuber, and D. B. Jones. New York: Springer New York, 2012, pp. 15–59.Google Scholar
  11. 11.
    Nikolaidis, M. G., A. Petridou, and V. Mougios. Comparison of the phospholipid and triacylglycerol fatty acid profile of rat serum, skeletal muscle and heart. Physiol. Res. 55:259, 2006.PubMedGoogle Scholar
  12. 12.
    Pang, H., and S.-H. Jung. Sample size considerations of prediction-validation methods in high-dimensional data for survival outcomes. Genet. Epidemiol. 37:276–282, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pataky, R. E., and C. R. Baliski. Reoperation costs in attempted breast-conserving surgery: a decision analysis. Curr. Oncol. 23:314–321, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Quadrianto, N., and W. L. Buntine. Linear discriminant. In: Encyclopedia of Machine Learning, edited by C. Sammut, and G. I. Webb. Boston: Springer US, 2010, pp. 601–603. DOI: https://doi.org/10.1007/978-0-387-30164-8_475.
  15. 15.
    Roth, J. A., and C. K. Tuggle. Livestock models in translational medicine. ILAR J. 56:1–6, 2015.CrossRefPubMedGoogle Scholar
  16. 16.
    Schäfer, K.-C., J. Dénes, K. Albrecht, T. Szaniszló, J. Balog, R. Skoumal, M. Katona, M. Tóth, L. Balogh, and Z. Takáts. In vivo, in situ tissue analysis using rapid evaporative ionization mass spectrometry. Angew. Chem. Int. Ed. 48:8240–8242, 2009.CrossRefGoogle Scholar
  17. 17.
    Sharp, J., K. Bouazza-Marouf, D. Noronha, and A. Gaur. Tissue type determination by impedance measurement: a bipolar and monopolar comparison. Saudi J. Anaesth. 11:15–20, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    St John, E. R., J. Balog, J. S. McKenzie, M. Rossi, A. Covington, L. Muirhead, Z. Bodai, F. Rosini, A. V. M. Speller, S. Shousha, R. Ramakrishnan, A. Darzi, Z. Takats, and D. R. Leff. Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the identification of breast pathology: towards an intelligent knife for breast cancer surgery. Breast Cancer Res. 19(1):59, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sugimoto, M., S. Ikeda, K. Niigata, M. Tomita, H. Sato, and T. Soga. MMMDB: mouse multiple tissue metabolome database. Nucleic Acids Res. 40:D809–D814, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ulmer, B. C. The hazards of surgical smoke. AORN J. 87:721–738, 2008.CrossRefPubMedGoogle Scholar
  21. 21.
    Verplanken, K., S. Stead, R. Jandova, C. V. Poucke, J. Claereboudt, J. V. Bussche, S. D. Saeger, Z. Takats, J. Wauters, and L. Vanhaecke. Rapid evaporative ionization mass spectrometry for high-throughput screening in food analysis: the case of boar taint. Talanta 169:30–36, 2017.CrossRefPubMedGoogle Scholar
  22. 22.
    Watson, J. T., and O. D. Sparkman. Introduction to Mass Spectrometry: Instrumentation, Applications, And strategies for Data Interpretation. Chichester: Wiley, 2007, pp. 25–26.Google Scholar
  23. 23.
    Woodard, H. Q., and D. R. White. The composition of body tissues. Br. J. Radiol. 59:1209–1218, 1986.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.BioMediTech Institute and Faculty of Biomedical Sciences and EngineeringTampere University of TechnologyTampereFinland
  2. 2.Department of SurgeryHatanpää HospitalTampereFinland
  3. 3.Division of Vascular SurgeryTampere University HospitalTampereFinland
  4. 4.Faculty of Medicine and Life SciencesUniversity of TampereTampereFinland
  5. 5.Finnish Cardiovascular Research CenterTampereFinland

Personalised recommendations