Advertisement

Annals of Biomedical Engineering

, Volume 46, Issue 8, pp 1079–1090 | Cite as

The Development of a Four-Electrode Bio-Impedance Sensor for Identification and Localization of Deep Pulmonary Nodules

  • Rasool Baghbani
  • Mohammad Hassan Moradi
  • Mohammad Behgam Shadmehr
Article

Abstract

Identifying and localizing of deep pulmonary nodules are among the main challenges that thoracic surgeons face during operations, particularly in thoracoscopic procedures. To facilitate this, we have tried to introduce a non-invasive and safe method by measuring the lung electrical bio-impedance spectrum with a four-electrode array sensor. To study the feasibility of this method, since any change in the depth or diameter of the nodule in the lung tissue is not practical, we used the finite element modeling of the lung tissue and pulmonary nodule to allow changes in the depth and diameter of the nodule, as well as the distance in between the injection electrodes. Accordingly, a bio-impedance sensor was designed and fabricated. By measuring the electrical impedance spectrum of pulmonary tissues in four different specimens with a frequency band of 50 kHz to 5 MHz, 4 pulmonary nodules at four different depths were identified. The obtained bio-impedance spectrum from the lung surface showed that the magnitude and phase of electrical bio-impedance of the tumoral tissue at each frequency is smaller than that of the healthy tissue. In addition, the frequency characteristic varies in the Nyquist curves for tumoral and healthy lung tissues.

Keywords

Pulmonary nodule Minimally invasive surgery Thoracoscopic surgery Electrical bio-impedance sensor Frequency characteristic 

References

  1. 1.
    Aberg, P., I. Nicander, J. Hansson, P. Geladi, U. Holmgren, and S. Ollmar. Skin cancer identification using multifrequency electrical impedance-a potential screening tool. IEEE Trans. Biomed. Eng. 51:2097–2102, 2004.CrossRefPubMedGoogle Scholar
  2. 2.
    Baghbani, R., M. H. Moradi, and M. B. Shadmehr. Identifying and localizing of the in-depth pulmonary nodules using electrical bio-impedance. J. Investig. Surg. 2017.  https://doi.org/10.1080/08941939.2017.1394403.CrossRefGoogle Scholar
  3. 3.
    Chung, Y.-K., J. Reboud, K. C. Lee, H. M. Lim, P. Y. Lim, K. Y. Wang, K. C. Tang, H. Ji, and Y. Chen. An electrical biosensor for the detection of circulating tumor cells. Biosens. Bioelectron. 26:2520–2526, 2011.CrossRefPubMedGoogle Scholar
  4. 4.
    Dai, Y., J. Du, Q. Yang, and J. Zhang. Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies. Bioelectromagnetics 35:385–395, 2014.CrossRefPubMedGoogle Scholar
  5. 5.
    Dai, Y., J. Du, Q. Yang, and J. Zhang. Development of a noninvasive electrical impedance probe for minimally invasive tumor localization. Physiol. Meas. 36:1785, 2015.CrossRefGoogle Scholar
  6. 6.
    Foster, K. R., and J. L. Schepps. Dielectric properties of tumor and normal tissues at radio through microwave frequencies. J. Microw. Power 16:107–119, 1981.CrossRefPubMedGoogle Scholar
  7. 7.
    Gabriel, C., S. Gabriel, and E. Corthout. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41:2231, 1996.CrossRefPubMedGoogle Scholar
  8. 8.
    Gabriel, S., R. W. Lau, and C. Gabriel. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41:2251, 1996.CrossRefPubMedGoogle Scholar
  9. 9.
    Gabriel, C., A. Peyman, and E. H. Grant. Electrical conductivity of tissue at frequencies below 1 MHz. Phys. Med. Biol. 54:4863, 2009.CrossRefPubMedGoogle Scholar
  10. 10.
    Glickman, Y. A., O. Filo, M. David, A. Yayon, M. Topaz, B. Zamir, A. Ginzburg, D. Rozenman, and G. Kenan. Electrical impedance scanning: a new approach to skin cancer diagnosis. Skin Res. Technol. 9:262–268, 2003.CrossRefPubMedGoogle Scholar
  11. 11.
    Gregory, W. D., J. J. Marx, C. W. Gregory, W. M. Mikkelson, J. A. Tjoe, and J. Shell. The Cole relaxation frequency as a parameter to identify cancer in breast tissue. Med. Phys. 39:4167–4174, 2012.CrossRefPubMedGoogle Scholar
  12. 12.
    Grysiński, T., and Z. Moroń. Planar sensors for local conductivity measurements in biological objects—design, modelling, sensitivity maps. Sens. Actuators B Chem. 158:190–198, 2011.CrossRefGoogle Scholar
  13. 13.
    Han, A., L. Yang, and A. B. Frazier. Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy. Clin. Cancer Res. 13:139–143, 2007.CrossRefPubMedGoogle Scholar
  14. 14.
    Harris, K., J. Puchalski, and D. Sterman. Recent advances in bronchoscopic treatment of peripheral lung cancers. Chest 151:674–685, 2017.CrossRefPubMedGoogle Scholar
  15. 15.
    Hesabgar, S. M., A. Sadeghi-Naini, G. Czarnota, and A. Samani. Dielectric properties of the normal and malignant breast tissues in xenograft mice at low frequencies (100 Hz–1 MHz). Measurement 105:56–65, 2017.CrossRefGoogle Scholar
  16. 16.
    IEEE Standards Coordinating Committee. IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE 1999.  https://doi.org/10.1109/IEEESTD.1999.89423.CrossRefGoogle Scholar
  17. 17.
    Jahnke, H.-G., A. Heimann, R. Azendorf, K. Mpoukouvalas, O. Kempski, A. A. Robitzki, and P. Charalampaki. Impedance spectroscopy—an outstanding method for label-free and real-time discrimination between brain and tumor tissue in vivo. Biosens. Bioelectron. 46:8–14, 2013.CrossRefPubMedGoogle Scholar
  18. 18.
    Jangra, D., T. Powell, S. E. Kalloger, H. L. Guerra, J. Clifton, H. O. Coxson, R. J. Finley, and J. R. Mayo. CT-directed microcoil localization of small peripheral lung nodules: a feasibility study in pigs. J. Investig. Surg. 18:265–272, 2005.CrossRefGoogle Scholar
  19. 19.
    Jianxun, D., D. Jun, Y. Qing, and Z. Jianxun. Development of a noninvasive electrical impedance probe for minimally invasive tumor localization. Physiol. Meas. 36:1785, 2015.CrossRefPubMedGoogle Scholar
  20. 20.
    Keating, J., and S. Singhal. Novel methods of intraoperative localization and margin assessment of pulmonary nodules. Semin. Thorac. Cardiovasc. Surg. 28:127–136, 2016.CrossRefPubMedGoogle Scholar
  21. 21.
    Keshtkar, A., Z. Salehnia, M. H. Somi, and A. T. Eftekharsadat. Some early results related to electrical impedance of normal and abnormal gastric tissue. Phys. Medica 28:19–24, 2012.CrossRefGoogle Scholar
  22. 22.
    Khan, S., A. Mahara, E. S. Hyams, A. Schned, and R. Halter. Towards intraoperative surgical margin assessment and visualization using bioimpedance properties of the tissue, 2015.Google Scholar
  23. 23.
    Li, Z., L. Chen, Y. Zhu, Q. Wei, W. Liu, D. Tian, and Y. Yu. Handheld electrical impedance myography probe for assessing carpal tunnel syndrome. Ann. Biomed. Eng. 45:1572–1580, 2017.CrossRefPubMedGoogle Scholar
  24. 24.
    Li, Q.-L., H.-W. Guan, Q.-P. Zhang, L.-Z. Zhang, F.-P. Wang, and Y.-J. Liu. Optimal margin in nephron-sparing surgery for renal cell carcinoma 4 cm or less. Eur. Urol. 44:448–451, 2018.CrossRefGoogle Scholar
  25. 25.
    Luo, X. A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and CT volume without markers. Med. Phys. 41:061913, 2014.CrossRefPubMedGoogle Scholar
  26. 26.
    Matsumoto, S., T. Hirata, E. Ogawa, T. Fukuse, H. Ueda, T. Koyama, T. Nakamura, and H. Wada. Ultrasonographic evaluation of small nodules in the peripheral lung during video-assisted thoracic surgery (VATS). Eur. J. Cardio-Thoracic Surg. 26:469–473, 2004.CrossRefGoogle Scholar
  27. 27.
    Modjarrad, K., S. Ebnesajjad. Plastics design library. Handbook of polymer applications in medicine and medical devices, 2014. http://www.books24x7.com/marc.asp?bookid=58853.
  28. 28.
    Nakashima, S., A. Watanabe, T. Obama, G. Yamada, H. Takahashi, and T. Higami. Need for preoperative computed tomography-guided localization in video-assisted thoracoscopic surgery pulmonary resections of metastatic pulmonary nodules. Ann. Thorac. Surg. 89:212–218, 2017.CrossRefGoogle Scholar
  29. 29.
    Nicander, I., L. Emtestam, P. Åberg, and S. Ollmar. Twelve years evolution of skin as seen by electrical impedance. J. Phys. Conf. Ser. 224:12092, 2010.CrossRefGoogle Scholar
  30. 30.
    Rabbani, K. S., and M. A. S. Karal. A new four-electrode focused impedance measurement (FIM) system for physiological study. Ann. Biomed. Eng. 36:1072–1077, 2008.CrossRefPubMedGoogle Scholar
  31. 31.
    Ryan, J. H., H. Alex, D. P. Keith, S. Alan, and H. John. Genetic and least squares algorithms for estimating spectral EIS parameters of prostatic tissues. Physiol. Meas. 29:S111, 2008.CrossRefGoogle Scholar
  32. 32.
    Santambrogio, R., M. Montorsi, P. Bianchi, A. Mantovani, F. Ghelma, and M. Mezzetti. Intraoperative ultrasound during thoracoscopic procedures for solitary pulmonary nodules. Ann. Thorac. Surg. 68:218–222, 1999.CrossRefPubMedGoogle Scholar
  33. 33.
    Shlomi, L., I. Antoni, E. R. Victor, R. Boris, and B. S. Stephen. Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiol. Meas. 31:995, 2010.CrossRefGoogle Scholar
  34. 34.
    Siegel, R. L., K. D. Miller, and A. Jemal. Cancer statistics, 2017. CA. Cancer J. Clin. 67:7–30, 2017.CrossRefPubMedGoogle Scholar
  35. 35.
    Smallwood, R. H., and A. Keshtkar. Electrical impedance spectroscopy and the diagnosis of bladder pathology. Physiol. Meas. 27:585, 2006.CrossRefPubMedGoogle Scholar
  36. 36.
    Wait, J. R. Chapter I—Earth resistivity principles. In: Geo-electromagnetism. New York: Academic Press, 1982, pp. 1–67.  https://doi.org/10.1016/B978-0-12-730880-7.50005-3.
  37. 37.
    Wan, Y., A. Borsic, J. Heaney, J. Seigne, A. Schned, M. Baker, S. Wason, A. Hartov, and R. Halter. Transrectal electrical impedance tomography of the prostate: spatially coregistered pathological findings for prostate cancer detection. Med. Phys. 40:063102, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Weaver, H., and A. S. Coonar. Lung cancer: diagnosis, staging and treatment. Surgery 35:247–254, 2017.Google Scholar
  39. 39.
    Webster, D., S. T. Staelin, J. Z. Tsai, S. Tungjitkusolmun, D. M. Mahvi, and J. G. Webster. In vivo electrical conductivity of hepatic tumours. Physiol. Meas. 24:251, 2003.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Rasool Baghbani
    • 1
  • Mohammad Hassan Moradi
    • 1
  • Mohammad Behgam Shadmehr
    • 2
  1. 1.Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.Department of Thoracic Surgery, Tracheal Diseases Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD)Shahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations