Advertisement

Annals of Biomedical Engineering

, Volume 46, Issue 8, pp 1146–1159 | Cite as

Cell Mimicking Microparticles Influence the Organization, Growth, and Mechanophenotype of Stem Cell Spheroids

  • Nicholas R. Labriola
  • Jessica S. Sadick
  • Jeffrey R. Morgan
  • Edith Mathiowitz
  • Eric M. Darling
Article

Abstract

Substrate stiffness is known to alter cell behavior and drive stem cell differentiation, though most research in this area has been restricted to traditional, two-dimensional culture systems rather than more physiologically relevant, three-dimensional (3D) platforms. In this study, we utilized polymer-based, cell mimicking microparticles (CMMPs) to deliver distinct, stable mechanical cues to human adipose derived stem cells in 3D spheroid culture to examine changes in adipogenic differentiation response and mechanophenotype. After 21 days of adipogenic induction, spheroids containing CMMPs (composite spheroids) stiffened in accordance with CMMP elasticity such that spheroids containing the stiffest, ~ 10 kPa, CMMPs were over 27% stiffer than those incorporating the most compliant, ~ 0.25 kPa CMMPs. Adipogenically induced, cell-only spheroids were over 180% larger and 50% more compliant than matched controls. Interestingly, composite spheroids cultured without chemical induction factors dissociated when presented with CMMPs stiffer than ~ 1 kPa, while adipogenic induction factors mitigated this behavior. Gene expression for PPARG and FABP4 were upregulated more than 45-fold in adipogenically induced samples compared to controls but were unaffected by CMMP elasticity, attributed to insufficient cell-CMMP contacts throughout the composite spheroid. In summary, mechanically tuned CMMPs influenced whole-spheroid mechanophenotype and stability but minimally affected differentiation response.

Keywords

Stem cell differentiation Adipogenesis Elastic and viscoelastic properties 3D spheroid culture Self-assembly Atomic force microscopy (AFM) Hyper-compliant microparticles Tissue engineering 

Abbreviations

AFM

Atomic force microscopy

APS

Ammonium persulfate

ASCs

Adipose derived stem cells

CMMP

Cell mimicking microparticle

Eelastic

Young’s modulus/elastic modulus

ER

Relaxed modulus

E0

Instantaneous modulus

FABP4

Fatty acid binding protein 4

IBMX

3-Isobutyl-1-methylxanthine

PAAm

Polyacrylamide

PBS

Phosphate buffered saline

PPARG

Peroxisome proliferator-activated receptor gamma

TEMED

Tetramethylethylenediamine

µ

Apparent viscosity

2D

Two-dimensional

3D

Three-dimensional

Notes

Acknowledgments

The authors would like to thank Manisha K. Shah for her assistance with confocal imaging. This work was supported by awards from the National Institute of General Medical Sciences (EMD, P20 GM104937), National Institute of Arthritis and Musculoskeletal and Skin Diseases (EMD, R01 AR063642), and the National Science Foundation (EMD, CAREER Award, CBET1253189). The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the National Science Foundation or National Institutes of Health.

Conflict of interest

NRL, EM, and EMD have patent filings relevant to the technology in this study. EMD owns MimicSphere, LLC, which focuses on the same technology.

Author Contributions

NRL and EMD designed the study. NRL performed all CMMP/substrate preparation, cell culture, mechanical testing, and imaging. NRL, EMD, and JSS analyzed the data. NRL, EMD, JSS, JRM, and EM wrote and edited the manuscript. JRM and EM provided materials and consultation on the design, execution, and interpretation of the experiment and data sets.

Supplementary material

10439_2018_2028_MOESM1_ESM.pdf (1.5 mb)
Supplementary material 1 (PDF 1507 kb)

References

  1. 1.
    Achilli, T.-M., J. Meyer, and J. R. Morgan. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin. Biol. Therapy 12:1347–1360, 2012.CrossRefGoogle Scholar
  2. 2.
    Anderson, S. B., C. C. Lin, D. V. Kuntzler, and K. S. Anseth. The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Biomaterials 32:3564–3574, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Baraniak, P. R., M. T. Cooke, R. Saeed, M. A. Kinney, K. M. Fridley, and T. C. McDevitt. Stiffening of human mesenchymal stem cell spheroid microenvironments induced by incorporation of gelatin microparticles. J. Mech. Behav. Biomed. Mater. 11:63–71, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Baraniak, P. R., and T. C. McDevitt. Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res. 347:701–711, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chaudhuri, O., L. Gu, D. Klumpers, M. Darnell, S. A. Bencherif, J. C. Weaver, N. Huebsch, H. P. Lee, E. Lippens, G. N. Duda, and D. J. Mooney. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15:326–334, 2016.CrossRefPubMedGoogle Scholar
  6. 6.
    Cheng, N. C., S. Y. Chen, J. R. Li, and T. H. Young. Short-term spheroid formation enhances the regenerative capacity of adipose-derived stem cells by promoting stemness, angiogenesis, and chemotaxis. Stem Cells Transl. Med. 2:584–594, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Darling, E. M., S. Zauscher, J. A. Block, and F. Guilak. A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? Biophys. J . 92:1784–1791, 2007.CrossRefPubMedGoogle Scholar
  8. 8.
    Darling, E. M., S. Zauscher, and F. Guilak. Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthr. Cartil. 14:571–579, 2006.CrossRefPubMedGoogle Scholar
  9. 9.
    Dimitriadis, E. K., F. Horkay, J. Maresca, B. Kachar, and R. S. Chadwick. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82:2798–2810, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dolega, M. E., M. Delarue, F. Ingremeau, J. Prost, A. Delon, and G. Cappello. Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression. Nat. Commun. 8:14056, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.CrossRefPubMedGoogle Scholar
  12. 12.
    Estes, B. T., B. O. Diekman, J. M. Gimble, and F. Guilak. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat. Protoc. 5:1294–1311, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Estes, B. T., B. O. Diekman, and F. Guilak. Monolayer cell expansion conditions affect the chondrogenic potential of adipose-derived stem cells. Biotechnol. Bioeng. 99:986–995, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gonzalez-Cruz, R. D., V. C. Fonseca, and E. M. Darling. Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. Proc. Natl. Acad. Sci. 109:E1523–E1529, 2012.CrossRefPubMedGoogle Scholar
  15. 15.
    Guneta, V., Q. L. Loh, and C. Choong. Cell-secreted extracellular matrix formation and differentiation of adipose-derived stem cells in 3D alginate scaffolds with tunable properties. J. Biomed. Mater. Res. A 104:1090–1101, 2016.CrossRefPubMedGoogle Scholar
  16. 16.
    Guo, W. H., M. T. Frey, N. A. Burnham, and Y. L. Wang. Substrate rigidity regulates the formation and maintenance of tissues. Biophys. J. 90:2213–2220, 2006.CrossRefPubMedGoogle Scholar
  17. 17.
    Hayashi, K., and Y. Tabata. Preparation of stem cell aggregates with gelatin microspheres to enhance biological functions. Acta Biomater. 7:2797–2803, 2011.CrossRefPubMedGoogle Scholar
  18. 18.
    Hielscher, A. H., J. R. Mourant, and I. J. Bigio. Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions. Appl. Opt. 36:125–135, 1997.CrossRefPubMedGoogle Scholar
  19. 19.
    Huebsch, N., P. R. Arany, A. S. Mao, D. Shvartsman, O. A. Ali, S. A. Bencherif, J. Rivera-Feliciano, and D. J. Mooney. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9:518–526, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kilian, K. A., B. Bugarija, B. T. Lahn, and M. Mrksich. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. 107:4872–4877, 2010.CrossRefPubMedGoogle Scholar
  21. 21.
    Kumachev, A., J. Greener, E. Tumarkin, E. Eiser, P. W. Zandstra, and E. Kumacheva. High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation. Biomaterials 32:1477–1483, 2011.CrossRefPubMedGoogle Scholar
  22. 22.
    Labriola, N. R., A. Azagury, R. Gutierrez, E. Mathiowitz, and E. M. Darling. Concise review: Fabrication, customization, and application of cell mimicking microparticles in stem cell science. Stem Cells Transl. Med. 7:232–240, 2018.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Labriola, N. R., and E. M. Darling. Temporal heterogeneity in single-cell gene expression and mechanical properties during adipogenic differentiation. J. Biomech. 48:1058–1066, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Labriola, N. R., E. Mathiowitz, and E. M. Darling. Fabricating polyacrylamide microbeads by inverse emulsification to mimic the size and elasticity of living cells. Biomater. Sci. 5:41–45, 2017.CrossRefGoogle Scholar
  25. 25.
    Lo Surdo, J., and S. R. Bauer. Quantitative approaches to detect donor and passage differences in adipogenic potential and clonogenicity in human bone marrow-derived mesenchymal stem cells. Tissue Eng. Part C Methods 18:877–889, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Loh, Q. L., and C. Choong. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part B Rev. 19:485–502, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6:483–495, 2004.CrossRefPubMedGoogle Scholar
  28. 28.
    Napolitano, A., D. Dean, A. Man, J. Youssef, D. Ho, A. Rago, M. Lech, and J. Morgan. Scaffold-free three-dimensional cell culture utilizing micromolded nonadhesive hydrogels. Biotechniques 43:494–500, 2007.CrossRefPubMedGoogle Scholar
  29. 29.
    Nobusue, H., N. Onishi, T. Shimizu, E. Sugihara, Y. Oki, Y. Sumikawa, T. Chiyoda, K. Akashi, H. Saya, and K. Kano. Regulation of MKL1 via actin cytoskeleton dynamics drives adipocyte differentiation. Nat. Commun. 5:3368, 2014.CrossRefPubMedGoogle Scholar
  30. 30.
    Parekh, S. H., K. Chatterjee, S. Lin-Gibson, N. M. Moore, M. T. Cicerone, M. F. Young, and C. G. Simon, Jr. Modulus-driven differentiation of marrow stromal cells in 3D scaffolds that is independent of myosin-based cytoskeletal tension. Biomaterials 32:2256–2264, 2011.CrossRefPubMedGoogle Scholar
  31. 31.
    Shah, M. K., I. H. Garcia-Pak, and E. M. Darling. Influence of inherent mechanophenotype on competitive cellular adherence. Ann. Biomed. Eng. 45:2036–2046, 2017.CrossRefPubMedGoogle Scholar
  32. 32.
    Silver, N., S. Best, J. Jiang, and S. Thein. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 7:33, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Singh, M., C. P. Morris, R. J. Ellis, M. S. Detamore, and C. Berkland. Microsphere-based seamless scaffolds containing macroscopic gradients of encapsulated factors for tissue engineering. Tissue Eng. Part C 14:299–309, 2008.CrossRefGoogle Scholar
  34. 34.
    Tse, J. R., and A. J. Engler. Preparation of hydrogel substrates with tunable mechanical properties. Curr Protoc Cell Biol 2010.  https://doi.org/10.1002/0471143030.cb1016s47.PubMedGoogle Scholar
  35. 35.
    Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60:24–34, 2005.CrossRefGoogle Scholar
  36. 36.
    Young, D. A., Y. S. Choi, A. J. Engler, and K. L. Christman. Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials 34:8581–8588, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zheng, B., B. Cao, G. Li, and J. Huard. Mouse adipose-derived stem cells undergo multilineage differentiation in vitro but primarily osteogenic and chondrogenic differentiation in vivo. Tissue Eng. 12:1891–1901, 2006.CrossRefPubMedGoogle Scholar
  38. 38.
    Zoldan, J., E. D. Karagiannis, C. Y. Lee, D. G. Anderson, R. Langer, and S. Levenberg. The influence of scaffold elasticity on germ layer specification of human embryonic stem cells. Biomaterials 32:9612–9621, 2011.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Nicholas R. Labriola
    • 1
  • Jessica S. Sadick
    • 2
  • Jeffrey R. Morgan
    • 1
    • 2
    • 3
  • Edith Mathiowitz
    • 1
    • 2
    • 3
  • Eric M. Darling
    • 1
    • 2
    • 3
    • 4
  1. 1.Center for Biomedical EngineeringBrown UniversityProvidenceUSA
  2. 2.Department of Molecular Pharmacology, Physiology, and BiotechnologyBrown UniversityProvidenceUSA
  3. 3.School of EngineeringBrown UniversityProvidenceUSA
  4. 4.Department of OrthopaedicsBrown UniversityProvidenceUSA

Personalised recommendations