The Role of Circle of Willis Anatomy Variations in Cardio-embolic Stroke: A Patient-Specific Simulation Based Study


We describe a patient-specific simulation based investigation on the role of Circle of Willis anatomy in cardioembolic stroke. Our simulation framework consists of medical image-driven modeling of patient anatomy including the Circle, 3D blood flow simulation through patient vasculature, embolus transport modeling using a discrete particle dynamics technique, and a sampling based approach to incorporate parametric variations. A total of 24 (four patients and six Circle anatomies including the complete Circle) models were considered, with cardiogenic emboli of varying sizes and compositions released virtually and tracked to compute distribution to the brain. The results establish that Circle anatomical variations significantly influence embolus distribution to the six major cerebral arteries. Embolus distribution to MCA territory is found to be least sensitive to the influence of anatomical variations. For varying Circle topologies, differences in flow through cervical vasculature are observed. This incoming flow is recruited differently across the communicating arteries of the Circle for varying anastomoses. Emboli interact with the routed flow, and can undergo significant traversal across the Circle arterial segments, depending upon their inertia and density ratio with respect to blood. This interaction drives the underlying biomechanics of embolus transport across the Circle, explaining how Circle anatomy influences embolism risk.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8


  1. 1.

    Akins, P.T., A.P. Amar, R.S. Pakbaz, and J.D. Fields. Complications of endovascular treatment for acute stroke in the SWIFT trial with Solitaire and Merci devices. Am. J. Neuroradiol 35(3):524–528, 2014.

  2. 2.

    Alastruey, J., K.H. Parker, J. Peiró, S.M. Byrd, and S.J. Sherwin. Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J. Biomech. 40(8):1794–1805, 2007.

  3. 3.

    Alnæs, M.S., J. Isaksen, K.A. Mardal, B. Romner, M.K. Morgan, and T. Ingebrigtsen. Computation of hemodynamics in the circle of Willis. Stroke 38(9):2500–2505, 2007.

  4. 4.

    Alpers, B.J., and R.G. Berry. Circle of Willis in cerebral vascular disorders: the anatomical structure. Arch. Neurol,-Chicago 8(4):398–402, 1963.

  5. 5.

    Alpers, B.J., R.G. Berry, and R.M. Paddison. Anatomical studies of the circle of Willis in normal brain. AMA Arch. Neurol. Psychiatry 81(4):409–418, 1959.

  6. 6.

    Arboix, A., and J. Alioc. Cardioembolic stroke: clinical features, specific cardiac disorders and prognosis. Curr. Cardiol. Rev. 6(3):150–161, 2010.

  7. 7.

    Carr, I.A., N. Nemoto, R.S. Schwartz, and S.C. Shadden. Size-dependent predilections of cardiogenic embolic transport. Am. J. Physiol.-Heart C 305(5):H732–H739, 2013.

  8. 8.

    Cassot, F., Vergeur, V., Bossuet, P., Hillen, B., Zagzoule, M., and Marc-Vergnes, J.P. Effects of anterior communicating artery diameter on cerebral hemodynamics in internal carotid artery disease: a model study. Circulation 92(10):3122–3131, 1995.

  9. 9.

    DeVault, K., P.A. Gremaud, V. Novak, M.S. Olufsen, G. Vernieres, and P. Zhao. Blood flow in the circle of Willis: modeling and calibration. Multiscale Model. Sim. 7(2):888–909, 2008.

  10. 10.

    Ferro, J.M. Cardioembolic stroke: an update. Lancet Neurol. 2(3):177–188, 2003.

  11. 11.

    Ferro, J.M., A.R. Massaro, and J.L. Mas. Aetiological diagnosis of ischaemic stroke in young adults. Lancet Neurol. 9(11):1085–1096, 2010.

  12. 12.

    Gallo, D., Vardoulis, O., Monney, P., Piccini, D., Antiochos, P., Schwitter, J., Stergiopoulos, N., and Morbiducci, U. Cardiovascular morphometry with high-resolution 3D magnetic resonance: First application to left ventricle diastolic dysfunction. Med. Eng. Phys. 47:64–71, 2017.

  13. 13.

    Gottesman, R.F., P.M. Sherman, M.A. Grega, D.M. Yousem, L.M. Borowicz, O.A. Selnes, W.A. Baumgartner, and G.M. McKhann. Watershed strokes after cardiac surgery. Stroke 37(9):2306–2311, 2006.

  14. 14.

    Grinberg, L., Anor, T., Cheever, E., Madsen, J.R., and Karniadakis, G.E. Simulation of the human intracranial arterial tree. Philos. Trans. R. Soc. A 367(1896):2371–2386, 2009.

  15. 15.

    Hart, R.G., H.C. Diener, S.B. Coutts, J.D. Easton, C.B. Granger, M.J. O’Donnell, R.L. Sacco, S.J. Connolly, Cryptogenic Stroke/ESUS International Working Group, et al. Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol. 13(4):429–438, 2014.

  16. 16.

    Hendrikse, J., Hartkamp, M.J., Hillen, B., Mali, W.P., and Van der Grond, J. Collateral ability of the Circle of Willis in patients with unilateral internal carotid artery occlusion: border zone infarcts and clinical symptoms. Stroke 32(12):2768–2773, 2001.

  17. 17.

    Hillen, B., Hoogstraten, H.W., and Post, L. A mathematical model of the flow in the Circle of Willis. J. Biomech. 19(3):187–194, 1986.

  18. 18.

    Hillen, B., Drinkenburg, B.A.H., Hoogstraten, H.W., and Post, L. Analysis of flow and vascular resistance in a model of the Circle of Willis. J. Biomech. 21(10):807–814, 1988.

  19. 19.

    Hoksbergen, A.W.J., B. Fülesdi, D.A. Legemate, and L. Csiba. Collateral configuration of the circle of Willis. Stroke 31(6):1346–1351, 2000.

  20. 20.

    Hoksbergen, A.W.J., D.A. Legemate, L. Csiba, G. Csati, P. Siro, and B. Fülesdi. Absent collateral function of the circle of Willis as risk factor for ischemic stroke. Cerebrovasc. Dis. 16(3):191–198, 2003.

  21. 21.

    Hoksbergen, A.W.J., D.A. Legemate, D.T. Ubbink, and M.J.H.M. Jacobs. Collateral variations in circle of Willis in atherosclerotic population assessed by means of transcranial color-coded duplex ultrasonography. Stroke 31(7):1656–1660, 2000.

  22. 22.

    Kapoor, K., B. Singh, and I.J. Dewan. Variations in the configuration of the circle of Willis. Anat. Sci. Int. 83(2):96–106, 2008.

  23. 23.

    Kim, G.E., Y.P. Cho, and S.M. Lim. The anatomy of the circle of Willis as a predictive factor for intra-operative cerebral ischemia (shunt need) during carotid endarterectomy. Neurol. Res. 24(3):237–240, 2002.

  24. 24.

    Kim, H.J., J.M. Song, S.U. Kwon, B.J. Kim, D.H. Kang, J.K. Song, J.S. Kim, and D.W. Kang. Right-left propensity and lesion patterns between cardiogenic and aortogenic cerebral embolisms. Stroke 42(8):2323–2325, 2011.

  25. 25.

    Kluytmans, M., J. Van der Grond, K.J. Van Everdingen, C.J.M. Klijn, L.J. Kappelle, and M.A. Viergever. Cerebral hemodynamics in relation to patterns of collateral flow. Stroke 30(7):1432–1439, 1999.

  26. 26.

    Korin, N., M. Kanapathipillai, B.D. Matthews, M. Crescente, A. Brill, T. Mammoto, K. Ghosh, S. Jurek, S.A. Bencherif, D. Bhatta, et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 337(6095):738–742, 2012.

  27. 27.

    Krishnaswamy, A., J.P. Klein, and S.R. Kapadia. Clinical cerebrovascular anatomy. Catheter. Cardio. Intervent. 75(4):530–539, 2010.

  28. 28.

    Les, A.S., S.C. Shadden, C.A. Figueroa, J.M. Park, M.M. Tedesco, R.J. Herfkens, R.L. Dalman, and C.A. Taylor. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 38(4):1288–1313, 2010.

  29. 29.

    Liebeskind, D.S. Collateral circulation. Stroke 34(9):2279–2284, 2003.

  30. 30.

    Lubicz, B., L. Collignon, G. Raphaeli, J.P. Pruvo, M. Bruneau, O. De Witte, and X. Leclerc. Flow-diverter stent for the endovascular treatment of intracranial aneurysms. Stroke 41(10):2247–2253, 2010.

  31. 31.

    MacDonald, M.E., and R. Frayne. Phase contrast MR imaging measurements of blood flow in healthy human cerebral vessel segments. Physiol. Meas. 36(7):1517–1527, 2015.

  32. 32.

    Marosfoi, M.G., N. Korin, M.J. Gounis, O. Uzun, S. Vedantham, E.T. Langan, A.L. Papa, O.W. Brooks, C. Johnson, A.S. Puri, et al. Shear-activated nanoparticle aggregates combined with temporary endovascular bypass to treat large vessel occlusion. Stroke 46(12):3507–3513, 2015.

  33. 33.

    Maxey, M.R., and J.J. Riley. Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26(4):883–889, 1983.

  34. 34.

    Morbiducci, U., Ponzini, R., Gallo, D., Bignardi, C., and Rizzo, G. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta. J. Biomech. 46:102–109, 2013.

  35. 35.

    Mukherjee, D., N.D. Jani, K. Selvaganesan, C.L. Weng, and S.C. Shadden. Computational assessment of the relation between embolism source and embolus distribution to the circle of Willis for improved understanding of stroke etiology. J. Biomech. Eng. 138(8):081008, 2016.

  36. 36.

    Mukherjee, D., J. Padilla, and S.C. Shadden. Numerical investigation of fluid-particle interactions for embolic stroke. Theor. Comp. Fluid Dyn. 30(1–2):23–39, 2016.

  37. 37.

    Mukherjee, D., and S.C. Shadden. Inertial particle dynamics in large artery flows-Implications for modeling arterial embolisms. J. Biomech. 52:155–164, 2017.

  38. 38.

    Olufsen, M.S., Peskin, C.S., Kim, W.Y., Pedersen, E.M., Nadim, A., and Larsen, J. Numerical simulation and experimental validation of blood flow iin arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28(11):1281–1299, 2000.

  39. 39.

    Patel, N., M.A. Horsfield, C. Banahan, J. Janus, K. Masters, J. Morlese, V. Egan, and E.M.L. Chung. Impact of perioperative infarcts after cardiac surgery. Stroke 46:680–686, 2015.

  40. 40.

    Ringelstein, E.B., C. Weiller, M. Weckesser, and S. Weckesser. Cerebral vasomotor reactivity is significantly reduced in low-flow as compared to thromboembolic infarctions: the key role of the circle of Willis. J. Neurol. Sci. 121(1):103–109, 1994.

  41. 41.

    Schomer, D.F., M.P. Marks, G.K. Steinberg, I.M. Johnstone, D.B. Boothroyd, M.R. Ross, N.J. Pelc, and D.R. Enzmann. The anatomy of the posterior communicating artery as a risk factor for ischemic cerebral infarction. N. Eng. J. Med. 330(22):1565–1570, 1994.

  42. 42.

    Smith, W.S., M.H. Lev, J.D. English, E.C. Camargo, M. Chou, S.C. Johnston, G. Gonzalez, P.W. Schaefer, W.P. Dillon, W.J. Koroshetz, and K.L. Furie. Significance of large vessel intracranial occlusion causing acute ischemic stroke and TIA. Stroke 40(12):3834–3840, 2009.

  43. 43.

    Steinman, D.A. Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann. Biomed. Eng. 30(4):483–497, 2002.

  44. 44.

    Szabo, K., R. Kern, A. Gass, J. Hirsch, and M. Hennerici. Acute stroke patterns in patients with internal carotid artery disease. Stroke 32(6):1323–1329, 2001.

  45. 45.

    Tanaka, H., N. Fujita, T. Enoki, K. Matsumoto, Y. Watanabe, K. Murase, and H. Nakamura. Relationship between variations in the circle of willis and flow rates in internal carotid and basilar arteries determined by means of magnetic resonance imaging with semiautomated lumen segmentation: reference data from 125 healthy volunteers. Am. J. Neuroradiol. 27(8):1770–1775, 2006.

  46. 46.

    Taylor, C.A., and D.A. Steinman. Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions. Ann. Biomed. Eng. 38(3):1188–1203, 2010.

  47. 47.

    Torvik, A. The pathogenesis of watershed infarcts in the brain. Stroke 15(2):221–223, 1984.

  48. 48.

    Updegrove, A., N.M. Wilson, J. Merkow, H. Lan, A.L. Marsden, and S.C. Shadden. SimVascular: an open source pipeline for cardiovascular simulation. Ann. Biomed. Eng.:1–17, 2016.

  49. 49.

    Van Seeters, T., J. Hendrikse, G.J. Biessels, B.K. Velthuis, W.P.T.M. Mali, L.J. Kappelle, Y. van der Graaf, SMART Study Group, et al. Completeness of the circle of Willis and risk of ischemic stroke in patients without cerebrovascular disease. Neuroradiology 57(12):1247–1251, 2015.

  50. 50.

    Zamir, M., Sinclair, P., and Wonnacott, T.H. Relation between diameter and flow in major branches of the arch of the aorta. J. Biomech. 25(11):1303–1310, 1992.

Download references


This work was supported by the American Heart Association Award: 13GRNT17070095. This research used the Savio computational cluster resource provided by the Berkeley Research Computing program at the University of California, Berkeley. NDJ acknowledges support from the Regent’s and Chancellor’s Research Fellowship at U.C. Berkeley. DM, NDJ, and SCS conceptualized the design of the study. DM developed the computational framework, performed the embolus dynamics, performed all statistical and data analysis, drafted the manuscript. NDJ devised the image-based modeling framework, computed all flow simulations, and contributed to embolus dynamics simulations. JN helped with data analysis, and contributed clinical and diagnostic connections to the simulation data. NDJ, SCS, and JN reviewed and edited the manuscript draft. Final manuscript version was in agreement with all Authors.

Conflict of interest

There are no conflicts of interest.

Author information

Correspondence to Debanjan Mukherjee.

Additional information

Associate Editor Ender A. Finol oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 2 (MP4 28204 kb)

Electronic supplementary material 1 (PDF 2594 kb)

Electronic supplementary material 2 (MP4 28204 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, D., Jani, N.D., Narvid, J. et al. The Role of Circle of Willis Anatomy Variations in Cardio-embolic Stroke: A Patient-Specific Simulation Based Study. Ann Biomed Eng 46, 1128–1145 (2018) doi:10.1007/s10439-018-2027-5

Download citation


  • Stroke
  • Embolus
  • Hemodynamics
  • Circle of Willis
  • Fluid–particle interaction