Annals of Biomedical Engineering

, Volume 46, Issue 8, pp 1112–1127 | Cite as

Finite Element Analysis of Tricuspid Valve Deformation from Multi-slice Computed Tomography Images

  • Fanwei Kong
  • Thuy Pham
  • Caitlin Martin
  • Raymond McKay
  • Charles Primiano
  • Sabet Hashim
  • Susheel Kodali
  • Wei SunEmail author


Despite the growing clinical interest in the tricuspid valve (TV), there is an incomplete understanding of TV biomechanics which is important in normal TV function and successful TV repair techniques. Computational models with patient-specific human TV geometries can provide a quantitative understanding of TV biomechanic. Therefore, this study aimed to develop finite element (FE) models of human TVs from multi-slice computed tomography (MSCT) images to investigate chordal forces and leaflet stresses and strains. Three FE models were constructed for human subjects with healthy TVs from MSCT images and incorporated detailed leaflet geometries, realistic nonlinear anisotropic hyperelastic material properties of human TV, and physiological boundary conditions tracked from MSCT images. TV closure from diastole to systole was simulated. Chordal lengths were iteratively adjusted until the simulated TV geometries were in good agreement with the “true” geometries reconstructed from MSCT images at systole. Larger chordal forces were found on the strut (or basal) chords than on the rough zone chords and the total forces applied on the anterior papillary muscles by the strut chords were higher than those on the posterior or septal papillary muscles. At peak systolic pressure, the average maximum stress on the middle sections of the leaflets ranged from 30 to 90 kPa, while the average maximum principal strain values ranged from 0.16 to 0.30. The results from healthy TVs can serve as baseline biomechanical metrics of TV mechanics and may be used to inform TV repair device design. The computational approach developed could be one step towards developing computational models that may support pre-operative planning in complex TV repair procedures in the future.


Multi-slice computed tomography Tricuspid valve Finite element analysis Patient-specific geometries Biomechanics 



Research for this project was funded in part by NIH HL104080 and HL127570 Grants. The authors would like to thank Erica Shin for tissue mechanical testing of TV tissues.


The authors declare that they have no conflict of interest.


  1. 1.
    Amini Khoiy, K., and R. Amini. On the biaxial mechanical response of porcine tricuspid valve leaflets. J. Biomech. Eng. 138:104506, 2016.CrossRefGoogle Scholar
  2. 2.
    Bruce, C. J., and H. M. Connolly. Right-sided valve disease deserves a little more respect. Circulation 119:2726–2734, 2009.CrossRefPubMedGoogle Scholar
  3. 3.
    Campelo-Parada, F., G. Perlman, F. Philippon, J. Ye, C. Thompson, E. Bédard, O. Abdul-Jawad Altisent, M. Del Trigo, J. Leipsic, P. Blanke, D. Dvir, R. Puri, J. G. Webb, and J. Rodés-Cabau. First-in-man experience of a novel transcatheter repair system for treating severe tricuspid regurgitation. J. Am. Coll. Cardiol. 66:2475–2483, 2015.CrossRefPubMedGoogle Scholar
  4. 4.
    Fukuda, S., G. Saracino, Y. Matsumura, M. Daimon, H. Tran, N. L. Greenberg, T. Hozumi, J. Yoshikawa, J. D. Thomas, and T. Shiota. Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation. Circulation 114:I-492–I-498, 2006.CrossRefGoogle Scholar
  5. 5.
    Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35, 2006.CrossRefPubMedGoogle Scholar
  6. 6.
    Gunnal, S. A., R. N. Wabale, and M. S. Farooqui. Morphological study of chordae tendinae in human cadaveric hearts. Heart Views 16:1–12, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    He, Z., J. Ritchie, J. S. Grashow, M. S. Sacks, and A. P. Yoganathan. In vitro dynamic strain behavior of the mitral valve posterior leaflet. J. Biomech. Eng. 127:504–511, 2005.CrossRefPubMedGoogle Scholar
  8. 8.
    Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. Phys. Sci. Solids 61:1–48, 2000.CrossRefGoogle Scholar
  9. 9.
    Jimenez, J. H., D. D. Soerensen, Z. He, S. He, and A. P. Yoganathan. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Ann. Biomed. Eng. 31:1171–1181, 2003.CrossRefPubMedGoogle Scholar
  10. 10.
    Jouan, J., M. R. Pagel, M. E. Hiro, K. H. Lim, E. Lansac, and C. M. Duran. Further information from a sonometric study of the normal tricuspid valve annulus in sheep: geometric changes during the cardiac cycle. J. Heart Valve Dis. 16:511–518, 2007.PubMedGoogle Scholar
  11. 11.
    Kragsnaes, E. S., J. L. Honge, J. B. Askov, J. M. Hasenkam, H. Nygaard, S. L. Nielsen, and M. O. Jensen. In-plane tricuspid valve force measurements: development of a strain gauge instrumented annuloplasty ring. Cardiovasc. Eng. Technol. 4:131–138, 2013.CrossRefGoogle Scholar
  12. 12.
    Latib, A., E. Agricola, A. Pozzoli, P. Denti, M. Taramasso, P. Spagnolo, J.-M. Juliard, E. Brochet, P. Ou, M. Enriquez-Sarano, F. Grigioni, O. Alfieri, A. Vahanian, A. Colombo, and F. Maisano. First-in-man implantation of a tricuspid annular remodeling device for functional tricuspid regurgitation. JACC 8:e211–e214, 2015.PubMedGoogle Scholar
  13. 13.
    Liang, L., F. Kong, C. Martin, T. Pham, Q. Wang, J. Duncan, and W. Sun. Machine learning-based 3-D geometry reconstruction and modeling of aortic valve deformation using 3-D computed tomography images. Int. J. Numer. Methods Biomed. Eng. 33:e2827, 2017.CrossRefGoogle Scholar
  14. 14.
    Liang, L., M. Liu, C. Martin, and W. Sun. A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis. J. R. Soc. Interface 15:20170844, 2018.CrossRefPubMedGoogle Scholar
  15. 15.
    Lim, K. O. Mechanical properties and ultrastructure of normal human tricuspid valve chordae tendineae. Jpn. J. Physiol. 30:455–464, 1980.CrossRefPubMedGoogle Scholar
  16. 16.
    Liu, H., and W. Sun. Computational efficiency of numerical approximations of tangent moduli for finite element implementation of a fiber-reinforced hyperelastic material model. Comput. Methods Biomech. Biomed. Eng. 19:1171–1180, 2016.CrossRefGoogle Scholar
  17. 17.
    Mansi, T., I. Voigt, B. Georgescu, X. Zheng, E. A. Mengue, M. Hackl, R. I. Ionasec, T. Noack, J. Seeburger, and D. Comaniciu. An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med. Image Anal. 16:1330–1346, 2012.CrossRefPubMedGoogle Scholar
  18. 18.
    Martin, C., and W. Sun. Biomechanical characterization of aortic valve tissue in humans and common animal models. J. Biomed. Mater. Res. A 100:1591–1599, 2012.CrossRefPubMedGoogle Scholar
  19. 19.
    Meduri, C. U., V. Rajagopal, M. A. Vannan, K. Feldt, and A. Latib. Transcatheter tricuspid valve therapies. Card. Interv. Today 11:48–53, 2017.Google Scholar
  20. 20.
    Morgan, A. E., J. L. Pantoja, J. Weinsaft, E. Grossi, J. M. Guccione, L. Ge, and M. Ratcliffe. Finite element modeling of mitral valve repair. J. Biomech. Eng. 138:0210091–0210098, 2016.CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Nath, J., E. Foster, and P. A. Heidenreich. Impact of tricuspid regurgitation on long-term survival. J. Am. Coll. Cardiol. 43:405–409, 2004.CrossRefPubMedGoogle Scholar
  22. 22.
    Pham, T., F. Kong, C. Martin, Q. Wang, C. Primiano, R. McKay, J. Elefteriades, and W. Sun. Finite element analysis of patient-specific mitral valve with mitral regurgitation. Cardiovasc. Eng. Technol. 8:3–16, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pham, T., F. Sulejmani, E. Shin, D. Wang, and W. Sun. Quantification and comparison of the mechanical properties of four human cardiac valves. Acta Biomater. 54:345–355, 2017.CrossRefPubMedGoogle Scholar
  24. 24.
    Sacks, M. S., Z. He, L. Baijens, S. Wanant, P. Shah, H. Sugimoto, and A. P. Yoganathan. Surface strains in the anterior leaflet of the functioning mitral valve. Ann. Biomed. Eng. 30:1281–1290, 2002.CrossRefPubMedGoogle Scholar
  25. 25.
    Sadeghpour, A., M. Hassanzadeh, M. Kyavar, H. Bakhshandeh, N. Naderi, B. Ghadrdoost, and Talab A. Haghighat. Impact of severe tricuspid regurgitation on long term survival. Res. Cardiovasc. Med. 2:121–126, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Schofer, J., K. Bijuklic, C. Tiburtius, L. Hansen, A. Groothuis, and R. T. Hahn. First-in-human transcatheter tricuspid valve repair in a patient with severely regurgitant tricuspid valve. J. Am. Coll. Cardiol. 65:1190–1195, 2015.CrossRefPubMedGoogle Scholar
  27. 27.
    Schueler, R., M. Malasa, C. Hammerstingl, and G. Nickenig. Transcatheter interventions for tricuspid regurgitation: MitraClip. EuroIntervention 12:Y108–Y109, 2016.CrossRefPubMedGoogle Scholar
  28. 28.
    Shiran, A., and A. Sagie. Tricuspid regurgitation in mitral valve disease. Incid. Progn. Implic. Mech. Manage. 53:401–408, 2009.Google Scholar
  29. 29.
    Silver, M. D., J. H. C. Lam, N. Ranganathan, and E. D. Wigle. Morphology of the human tricuspid valve. Circulation 43:333–348, 1971.CrossRefPubMedGoogle Scholar
  30. 30.
    Spinner, E. M., D. Buice, C. H. Yap, and A. P. Yoganathan. The effects of a three-dimensional, saddle-shaped annulus on anterior and posterior leaflet stretch and regurgitation of the tricuspid valve. Ann. Biomed. Eng. 40:996–1005, 2012.CrossRefPubMedGoogle Scholar
  31. 31.
    Stevanella, M., E. Votta, M. Lemma, C. Antona, and A. Redaelli. Finite element modelling of the tricuspid valve: a preliminary study. Med. Eng. Phys. 32:1213–1223, 2010.CrossRefPubMedGoogle Scholar
  32. 32.
    Stuge, O., and J. Liddicoat. Emerging opportunities for cardiac surgeons within structural heart disease. J. Thorac. Cardiovasc. Surg. 132:1258–1261, 2006.CrossRefPubMedGoogle Scholar
  33. 33.
    Sun, W., and M. S. Sacks. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech. Model. Mechanobiol. 4:190–199, 2005.CrossRefPubMedGoogle Scholar
  34. 34.
    Troxler, L. G., E. M. Spinner, and A. P. Yoganathan. Measurement of strut chordal forces of the tricuspid valve using miniature C ring transducers. J. Biomech. 45:1084–1091, 2012.CrossRefPubMedGoogle Scholar
  35. 35.
    van Rosendael, P. J., V. Delgado, and J. J. Bax. The tricuspid valve and the right heart: anatomical, pathological and imaging specifications. EuroIntervention 11(Suppl W):W123–W127, 2015.CrossRefPubMedGoogle Scholar
  36. 36.
    Votta, E., E. Caiani, F. Veronesi, M. Soncini, F. M. Montevecchi, and A. Redaelli. Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos. Trans. R. Soc. A 366:3411–3434, 2008.CrossRefGoogle Scholar
  37. 37.
    Wang, Q., and W. Sun. Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann. Biomed. Eng. 41:142–153, 2013.CrossRefPubMedGoogle Scholar
  38. 38.
    Wengenmayer, T., M. Zehender, W. Bothe, C. Bode, and S. Grundmann. First transfemoral percutaneous edge-to-edge repair of the tricuspid valve using the MitraClip system. EuroIntervention 11:1541–1544, 2016.CrossRefPubMedGoogle Scholar
  39. 39.
    Xanthos, T., I. Dalivigkas, and K. A. Ekmektzoglou. Anatomic variations of the cardiac valves and papillary muscles of the right heart. Italian J. Anat. Embryol. 116:111–126, 2011.Google Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaUSA
  2. 2.Cardiology and Cardiac SurgeryThe Hartford HospitalHartfordUSA
  3. 3.Structural Heart & Valve CenterColumbia University Medical CenterNew YorkUSA
  4. 4.The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaUSA

Personalised recommendations