A Semi-passive Planar Manipulandum for Upper-Extremity Rehabilitation

  • Chih-Kang Chang
  • Edward P. Washabaugh
  • Andrew Gwozdziowski
  • C. David Remy
  • Chandramouli Krishnan
Article
  • 52 Downloads

Abstract

Robotic rehabilitation is a promising approach to treat individuals with neurological or orthopedic disorders. However, despite significant advancements in the field of rehabilitation robotics, this technology has found limited traction in clinical practice. A key reason for this issue is that most robots are expensive, bulky, and not scalable for in-home rehabilitation. Here, we introduce a semi-passive rehabilitation robot (SepaRRo) that uses controllable passive actuators (i.e., brakes) to provide controllable resistances at the end-effector over a large workspace in a manner that is cost-effective and safe for in-home use. We also validated the device through theoretical analyses, hardware experiments, and human subject experiments. We found that by including kinematic redundancies in the robot’s linkages, the device was able to provide controllable resistances to purely resist the movement of the end-effector, or to gently steer (i.e., perturb) its motion away from the intended path. When testing these capabilities on human subjects, we found that many of the upper-extremity muscles could be selectively targeted based on the forcefield prescribed to the user. These results indicate that SepaRRo could serve as a low-cost therapeutic tool for upper-extremity rehabilitation; however, further testing is required to evaluate its therapeutic benefits in patient population.

Keywords

Kinematics Design Simulation Planar Two-dimensional Reaching Feedback 

Abbreviations

SepaRRo

Semi-passive rehabilitation robot

GUI

Graphical user interface

NNLS

Non-negative least squares

PWM

Pulse width modulation

EMG

Electromyography

MVC

Maximum voluntary contraction

ANOVA

Analysis of variance

PMC

Pectoralis major (clavicular)

PMS

Pectoralis major (sternal)

LD

Latissimus dorsi

Delt

Deltoid

BB

Biceps brachii

BR

Brachioradialis

TB

Triceps brachii

WF

Wrist flexors

WE

Wrist extensors

Notes

Acknowledgments

Research reported in this publication was supported by (1) National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Institutes of Health (Grant# R01-EB019834), (2) National Science Foundation Graduate Research Fellowship Program under Grant No. DGE #1256260, and (3) the University of Michigan Office of Research (UMOR) MCubed 2.0 program. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies. A special thanks to Shannon Leon and Justin Lee for the work they did in building and programming the robot.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Supplementary material

10439_2018_2020_MOESM1_ESM.pdf (231 kb)
Supplementary material 1 (PDF 232 kb)

References

  1. 1.
    Babaiasl, M., S. H. Mahdioun, P. Jaryani, and M. Yazdani. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabi. Rehabilit. 11:263–280, 2016.Google Scholar
  2. 2.
    Bertsekas, D. P. Nonlinear Programming, 2nd ed. Belmont: Athena Scientific, 1999.Google Scholar
  3. 3.
    Bi, S., L. Ji, and Z. Wang. Robot-aided sensorimotor arm training methods based on neurological rehabilitation principles in stroke and brain injury patients. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005, pp. 5025–5027, 2006.Google Scholar
  4. 4.
    BKin, R. N. M. Training with robot-applied resistance in people with motor-incomplete spinal cord injury: pilot study. J. Rehabilit. Res. Dev. 52:113, 2015.CrossRefGoogle Scholar
  5. 5.
    Book, W. J., R. Charles, H. T. Davis, and M. W. Gomes. The concept and implementation of a passive trajectory enhancing robot. Atlanta, GA: Georgia Institute of Technology, 1996.Google Scholar
  6. 6.
    Brewer, B. R., R. Klatzky, and Y. Matsuoka. Initial therapeutic results of visual feedback manipulation in robotic rehabilitation. In: 2006 International Workshop on Virtual Rehabilitation, pp. 160–166, 2006.Google Scholar
  7. 7.
    Chetran, B., D. Mândru, S. Noveanu, O. Tătar, and G. Răducanu. Electrorheological fluid based brake for active physiotherapy systems. Acta Univ. Sapientiae Electr. Mech. Eng. 4, 2012.Google Scholar
  8. 8.
    Cho, C., M. Kim, and J.-B. Song. Performance analysis of a 2-link haptic device with electric brakes. Proceedings 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS 2003, pp. 47–53, 2003.Google Scholar
  9. 9.
    Cooper, R. A., B. E. Dicianno, B. Brewer, E. LoPresti, D. Ding, R. Simpson, G. Grindle, and H. Wang. A perspective on intelligent devices and environments in medical rehabilitation. Med. Eng. Phys. 30:1387–1398, 2008.CrossRefPubMedGoogle Scholar
  10. 10.
    Dellon, B. and Y. Matsuoka. Path guidance control for a safer large scale dissipative haptic display. In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pp. 2073–2078, 2008.Google Scholar
  11. 11.
    Dewald, J. P., P. S. Pope, J. D. Given, T. S. Buchanan, and W. Z. Rymer. Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain 118:495–510, 1995.CrossRefPubMedGoogle Scholar
  12. 12.
    Duschau-Wicke, A., A. Caprez, and R. Riener. Patient-cooperative control increases active participation of individuals with sci during robot-aided gait training. J. Neuroeng. Rehabilit. 7:43, 2010.CrossRefGoogle Scholar
  13. 13.
    Daz, I., J. J. Gil, and E. Snchez. Lower-limb robotic rehabilitation: literature review and challenges. J. Robot.  https://doi.org/10.1155/2011/759764, 2011.Google Scholar
  14. 14.
    Fukushi, T. and J. Ashe. Adaptation of arm trajectory during continuous drawing movements in different dynamic environments. Exp. Brain Res. 148:95–104, 2003.CrossRefPubMedGoogle Scholar
  15. 15.
    Gao, D. Control limitation analysis for dissipative passive haptic interfaces. Ph.D. thesis, Georgia Institute of Technology, 2005.Google Scholar
  16. 16.
    Gao, D. and W. J. Book. Steerability for planar dissipative passive haptic interfaces. IEEE/ASME Transa. Mech. 11:179–184, 2006.CrossRefGoogle Scholar
  17. 17.
    Gao, D. and W. J. Book. Steerability in planar dissipative passive robots. Int. J. Robot. Res. 29:353–366, 2010.CrossRefGoogle Scholar
  18. 18.
    Genduso, F., R. Miceli, C. Rando, and G. R. Galluzzo. Back emf sensorless-control algorithm for high-dynamic performance pmsm. IEEE Trans. Ind. Electron. 57:2092–2100, 2010.CrossRefGoogle Scholar
  19. 19.
    Haraguchi, M. and J. Furusho. Passive-type rehabilitation system for upper limbs which can display the exact resistance force in the orientation opposite to hand motion. In: 2013 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1–6, 2013.Google Scholar
  20. 20.
    Hesse, S., H. Schmidt, C. Werner, and A. Bardeleben. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr. Opin. Neurol. 16:705–710, 2003.CrossRefPubMedGoogle Scholar
  21. 21.
    Hesse, S., G. Schulte-Tigges, M. Konrad, A. Bardeleben, and C. Werner. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch. Phys. Med. Rehabilit. 84:915–920, 2003.CrossRefGoogle Scholar
  22. 22.
    Johnson, M. J., X. Feng, L. M. Johnson, and J. M. Winters. Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation. J. Neuro Eng. Rehabilit. 4:6, 2007.CrossRefGoogle Scholar
  23. 23.
    Khatib, O., V. Kumar, and G. Sukhatme. Experimental Robotics: The 12th International Symposium on Experimental Robotics, Vol. 79. New York: Springer, 2013.Google Scholar
  24. 24.
    Kikuchi, T., H. Xinghao, K. Fukushima, K. Oda, J. Furusho, and A. Inoue. Quasi-3-dof rehabilitation system for upper limbs: its force-feedback mechanism and software for rehabilitation. In: IEEE 10th International Conference on Rehabilitation RoboFtics, 2007. ICORR 2007, pp. 24–27, 2007.Google Scholar
  25. 25.
    Krishnan, C., K. Huston, A. Amendola, and G. N. Williams. Quadriceps and hamstrings muscle control in athletic males and females. J. Orthop. Res. 26:800–808, 2008.CrossRefPubMedGoogle Scholar
  26. 26.
    Krishnan, C., R. Ranganathan, Y. Y. Dhaher, and W. Z. Rymer. A pilot study on the feasibility of robot-aided leg motor training to facilitate active participation. PloS ONE 8:e77370, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lawson, C. L. and R. J. Hanson. Solving least squares problems. In: Classics in Applied Mathematics. Philadelphia: Society for Industrial and Applied Mathematics, pp. 158–173, 1995.Google Scholar
  28. 28.
    Lu, E. C., R. H. Wang, D. Hebert, J. Boger, M. P. Galea, and A. Mihailidis. The development of an upper limb stroke rehabilitation robot: identification of clinical practices and design requirements through a survey of therapists. Disabil. Rehabilit. 6:420–431, 2011.Google Scholar
  29. 29.
    Maciejasz, P., J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and S. Leonhardt. A survey on robotic devices for upper-limb rehabilitation. J. Neuro Eng. Rehabilit. 11:3, 2014.CrossRefGoogle Scholar
  30. 30.
    Marchal-Crespo, L. and D. J. Reinkensmeyer. Review of control strategies for robotic movement training after neurologic injury. J. Neuro Eng. Rehabilit. 6:20, 2009.CrossRefGoogle Scholar
  31. 31.
    Mares, K., J. Cross, A. Clark, G. R. Barton, F. Poland, M. L. O’Driscoll, M. J. Watson, K. Mcglashan, P. K. Myint, and V. M. Pomeroy. The FeSTivaLS trial protocol: a randomized evaluation of the efficacy of functional strength training on enhancing walking and upper limb function later post stroke. Int. J. Stroke 8:374–382, 2013.CrossRefPubMedGoogle Scholar
  32. 32.
    Munir, S., L. Tognetti, and W. Book. Experimental evaluation of a new braking system for use in passive haptic displays. In: American Control Conference, 1999. Proceedings of the 1999, Vol. 6, pp. 4456–4460, 1999.Google Scholar
  33. 33.
    Pollock, A., G. Baer, P. Campbell, P. L. Choo, A. Forster, J. Morris, V. M. Pomeroy, and P. Langhorne. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst. Rev. 4:CD001920, 2014.Google Scholar
  34. 34.
    Qian, Z. and Z. Bi. Recent development of rehabilitation robots. Adv. Mech. Eng. 7:563062, 2015.CrossRefGoogle Scholar
  35. 35.
    Reed, M. R. and W. J. Book. Modeling and control of an improved dissipative passive haptic display. In: 2004 IEEE International Conference on Robotics and Automation, 2004. Proceedings ICRA’04, Vol. 1, pp. 311–318, 2004.Google Scholar
  36. 36.
    Reinkensmeyer, D. J., J. L. Emken, and S. C. Cramer. Robotics, motor learning, and neurologic recovery. Annu. Rev. Biomed. Eng. 6:497–525, 2004.CrossRefPubMedGoogle Scholar
  37. 37.
    Schwartz, I. and Z. Meiner. Robotic-assisted gait training in neurological patients: who may benefit? Ann. Biomed. Eng. 43:1260–1269, 2015.CrossRefPubMedGoogle Scholar
  38. 38.
    Senkal, D. and H. Gurocak. Haptic joystick with hybrid actuator using air muscles and spherical mr-brake. Mechatronics 21:951–960, 2011.CrossRefGoogle Scholar
  39. 39.
    Stienen, A. H., E. E. Hekman, F. C. Van der Helm, G. B. Prange, M. J. Jannink, A. M. Aalsma, and H. Van der Kooij. Dampace: dynamic force-coordination trainer for the upper extremities. In: IEEE 10th International Conference on Rehabilitation Robotics, 2007. ICORR 2007, pp. 820–826, 2007.Google Scholar
  40. 40.
    Thanh, T. D. C. and K. K. Ahn. Intelligent phase plane switching control of pneumatic artificial muscle manipulators with magneto-rheological brake. Mechatronics 16:85–95, 2006.CrossRefGoogle Scholar
  41. 41.
    Vasavada, A. N., B. W. Peterson, and S. L. Delp. Three-dimensional spatial tuning of neck muscle activation in humans. Exp. Brain Res. 147:437–448, 2002.CrossRefPubMedGoogle Scholar
  42. 42.
    Washabaugh, E. P., E. S. Claflin, R. B. Gillespie, and C. Krishnan. A novel application of Eddy current braking for functional strength training during gait. Ann. Biomed. Eng. 44:2760–2773, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Weightman, A., A. Alexoulis-Chrysovergis, and S. Oltean. What should we consider when designing rehabilitation robots for the upper limb of the neurologically impaired? Proceedings of the Australasian Conference on Robotics and Automation pp. 1–10, 2014.Google Scholar
  44. 44.
    Weightman, A., N. Preston, M. Levesley, R. Holt, M. Mon-Williams, M. Clarke, A. J. Cozens, and B. Bhakta. Home-based computer-assisted upper limb exercise for young children with cerebral palsy: a feasibility study investigating impact on motor control and functional outcome. J. Rehabilit. Med. 43:359–363, 2011.CrossRefGoogle Scholar
  45. 45.
    Williams, G. N., P. J. Barrance, L. Snyder-Mackler, M. J. Axe, and T. S. Buchanan. Specificity of muscle action after anterior cruciate ligament injury. J. Orthop. Res. 21:1131–1137, 2003.CrossRefPubMedGoogle Scholar
  46. 46.
    Willmann, R. D., G. Lanfermann, P. Saini, A. Timmermans, J. te Vrugt, and S. Winter. Home stroke rehabilitation for the upper limbs. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4015–4018, 2007.Google Scholar
  47. 47.
    Yang, Y.-R., R.-Y. Wang, K.-H. Lin, M.-Y. Chu, and R.-C. Chan. Task-oriented progressive resistance strength training improves muscle strength and functional performance in individuals with stroke. Clin. Rehabilit. 20:860–870, 2006.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and RehabilitationUniversity of MichiganAnn ArborUSA
  2. 2.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  3. 3.RAM Lab, Department of Mechanical EngineeringUniversity of MichiganAnn ArborUSA
  4. 4.Michigan Robotics, College of EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations