Annals of Biomedical Engineering

, Volume 46, Issue 5, pp 717–725 | Cite as

A Diaper Pad for Diaper-Based Urine Collection and Colorimetric Screening of Urinary Biomarkers

  • Haakon Karlsen
  • Tao DongEmail author
  • Zhenhe Suo


The high prevalence of urinary tract infection in aging adults is a challenging aspect of geriatric care. Incontinence and cognitive/functional impairment make collection of urine samples difficult and often require either catheterization for sample collection, which is a risk factor for infections, or more lenient criteria for initiating antibiotic treatment. We report the development of a diaper inlay with absorbent materials, superabsorbent polymer-based valve and chemical reaction pads for rapid screening of urinary tract infection of incontinent diaper-wearing elderly receivers of home care services. The developed diaper inlay was capable of collecting, isolating, analyzing samples and retaining results > 8 h. The diaper inlay can therefore be compatible with the diaper changing routines of nurses in home care services, without requiring much time or effort. A nurse can insert a diaper inlay in a diaper and the results can be recorded during a later diaper change. Although the research focuses on tools for home care services, the nursing home sector has similar problems and may benefit from technological development for rapid screening to avoid unnecessary catheterization and overuse of antibiotics.


Biosensors Capillary flow Geriatric care Rapid screening Urinary tract infection 



Research supported by: RFF Oslofjordfond projects: (1) Touchsensor for enklere og raskere urinprøvetaking og analyse, no. 234972, (2) Disruptiv Innovasjon for Vannovervåking - Forbedring i Styringen av Vannkvalitet, no. 272037, (3) Papirbasert kolorimetrisk sensorsystem med integrert polymer-lyskilder og -detektorer for kvantitativ deteksjon av biomarkører i spytt, no. 249017, (4) Mikro/nano-strukturerte overflater for in situ evaporeringskjøling ved krevende no. 258902, (5) Analyse av biomarkører i urin med et avansert kolorimetrisk biosensorinnlegg, no. 255893, (6) Smart-tøy for eldreomsorg: Oppfølging av fysiske aktiviteter og overvåkning av fysiologisk status i sanntid, no. 260586. RFF Hovedstaden: Biologisk Vannalarmsystem for å styrke offentlig vannkvalitets-styring No. 273869. Research Council of Norway projects: (1) FORNY2020: SENS-U: Et nytt og tidsbesparende produkt for prøvetaking og analyse av urin i bleie no. 268481, (2) NANO2021, no. 263783. EU Erasmus + Capacity Building in Higher Education: Internationalised Master Degree Education in Nanoelectronics in Asian Universities, no. 573828-EPP-1-2016-1-BG-EPPKA2-CBHE-JP. National Natural Science Foundation of China: (1) no. 61531008, (2) no. 61550110253, (3) 61650410655, (4) 11702045. Chongqing Research Program of Basic Research and Frontier Technology: no. cstc2015jcyjBX0004. Chongqing Innovation Team of Universities and Colleges—Smart Micro-Nano Systems Technology and Application: No. CXTDX201601025. Chongqing Education Commission - Science and Technology Research Program: (1) No. KJ1600602, (2) No. KJ15006XX. Chongqing Science and Technology Commission - the Leader of Science and Technology Innovation: no. CSTCCXLJRC201702. The 13th Recruitment Program of Global Experts (known as “the Thousand Talents Plan”), the Recruitment Program for Innovative Talents Chinese government, Xinjiang University, Tao DONG.

Conflict of interest

No conflicts of interest to report.


  1. 1.
    Belmin, J., Y. Hervias, E. Avellano, O. Oudart, and I. Durand. Reliability of sampling urine from disposable diapers in elderly incontinent women. J. Am. Geriatr. Soc. 41:1182–1186, 1993.CrossRefPubMedGoogle Scholar
  2. 2.
    Cimiotti, J. P., L. H. Aiken, D. M. Sloane, and E. S. Wu. Nurse staffing, burnout, and health care-associated infection. Am. J. Infect. Control. 40:486–490, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Curtis, E. B., and J. A. Morrow. Inverse problems for electrical networks. Singapore: World Sci., pp. 27–58, 2000.Google Scholar
  4. 4.
    Devillé, W., J. Yzermans, N. van Duijn, P. Bezemer, D. van der Windt, and L. Bouter. The urine dipstick test useful to rule out infections. A meta-analysis of the accuracy. BMC Urol. 4:1–14, 2004.CrossRefGoogle Scholar
  5. 5.
    Duin, R. P. W., P. Juszczak, P. Paclik, E. Pekalska, D. De Ridder, D. Tax, and S. Verzakov. PRTools 4.1. A Matlab Toolbox for Pattern Recognition, 2010.Google Scholar
  6. 6.
    Foxman, B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 7:653–660, 2010.CrossRefPubMedGoogle Scholar
  7. 7.
    Gorina, Y., S. Schappert, A. Bercovitz, N. Elgaddal, and E. Kramarow. Prevalence of incontinence among older Americans. Vital Health Stat. 3(36):1–33, 2014.Google Scholar
  8. 8.
    Hamilton-Miller, J. M. T. Issues in urinary tract infections in the elderly. World J. Urol. 17:396–401, 1999.CrossRefPubMedGoogle Scholar
  9. 9.
    Hooton, T. M., et al. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 international clinical practice guidelines from the infectious diseases society of America. Clin. Infect. Dis. 50:625–663, 2010.CrossRefPubMedGoogle Scholar
  10. 10.
    Hothorn, T., and K. Hornik. exactRankTests: exact distributions for rank and permutation tests. R package version 0.8-17, 2006.
  11. 11.
    Lipsky, B. A. Urinary tract infections in men. Epidemiology, pathophysiology, diagnosis, and treatment. Ann. Intern. Med. 110:138–150, 1989.CrossRefPubMedGoogle Scholar
  12. 12.
    Loog, M., R. P. M. Duin, and R. Haeb-Umbach. Multiclass linear dimension reduction by weighted pairwise Fisher criteria. IEEE Trans. Patt. Anal. Mach. Intell. 23:762–766, 2001.CrossRefGoogle Scholar
  13. 13.
    Newcombe, R. G. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med. 17:857–872, 1998.CrossRefPubMedGoogle Scholar
  14. 14.
    Nguyen-Van-Tam, S. E., J. S. Nguyen-Van-Tam, S. Myint, and J. C. G. Pearson. Risk factors for hospital-acquired urinary tract infection in a large English teaching hospital: a case-control study. Infection 27:192–197, 1999.CrossRefPubMedGoogle Scholar
  15. 15.
    Pezzlo, M. Detection of urinary tract infections by rapid methods. Clin. Microbiol. Rev. 1:268–280, 1988.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Poghosyan, L., S. P. Clarke, M. Finlayson, and L. H. Aiken. Nurse burnout and quality of care: cross-national investigation in six countries. Res. Nurs. Health. 33:288–298, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rowe, T. A., and M. Juthani-Mehta. Diagnosis and management of urinary tract infection in older adults. Infect. Dis. Clin. North Am. 28:75–89, 2014.CrossRefPubMedGoogle Scholar
  18. 18.
    Scherer, R. PropCIs: Various confidence interval methods for proportions. R package version 0.2–5, 2014.Google Scholar
  19. 19.
    Skotnes, L. H., R. Omli, U. Romild, O. Hellzèn, and E. Kuhry. Urinary incontinence in Norwegian nursing home residents. Open J. Nurs. 2:116–122, 2012.CrossRefGoogle Scholar
  20. 20.
    Toley, B. J., B. McKenzie, T. Liang, J. R. Buser, P. Yager, and E. Fu. Tunable-delay shunts for paper microfluidic devices. Anal. Chem. 85:11545–11552, 2013.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Institute of Applied Micro-Nano Science and Technology - IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business UniversityNan’an District, ChongqingChina
  2. 2.Institute of MicrosystemsUniversity College of Southeast NorwayBorreNorway
  3. 3.Department of Pathology, The Norwegian Radium HospitalOslo University HospitalOsloNorway
  4. 4.Department of Pathology, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway

Personalised recommendations