Advertisement

Annals of Biomedical Engineering

, Volume 46, Issue 4, pp 525–542 | Cite as

The Application of Pulsed Electromagnetic Fields (PEMFs) for Bone Fracture Repair: Past and Perspective Findings

  • C. Daish
  • R. Blanchard
  • K. Fox
  • P. Pivonka
  • E. Pirogova
Article

Abstract

Bone fractures are one of the most commonly occurring injuries of the musculoskeletal system. A highly complex physiological process, fracture healing has been studied extensively. Data from in vivo, in vitro and clinical studies, have shown pulsed electromagnetic fields (PEMFs) to be highly influential in the fracture repair process. Whilst the underlying mechanisms acting to either inhibit or advance the physiological processes are yet to be defined conclusively, several non-invasive point of use devices have been developed for the clinical treatment of fractures. With the complexity of the repair process, involving many components acting at different time steps, it has been a challenge to determine which PEMF exposure parameters (i.e., frequency of field, intensity of field and dose) will produce the most optimal repair. In addition, the development of an evidence-backed device comes with challenges of its own, with many elements (including process of exposure, construct materials and tissue densities) being highly influential to the field exposed. The objective of this review is to provide a broad recount of the applications of PEMFs in bone fracture repair and to then demonstrate what is further required for enhanced therapeutic outcomes.

Keywords

Tissue scale Bone repair Cell scale Review Computational modeling Clinical devices 

Notes

Acknowledgments

This research is supported by RMIT University, through the SECE Top Up Scholarship and the RMIT Enabling Capability Platform Capability Development Fund.

References

  1. 1.
    Adie, S., I. Harris, J. Naylor, H. Rae, A. Dao, S. Yong, and V. Ying 2011. Pulsed electromagnetic field stimulation for acute tibial shaft fractures: a multicenter, double-blind, randomized trial. J. Bone Joint Surg. 93(17):1569–1576.PubMedCrossRefGoogle Scholar
  2. 2.
    Ament, C. and E. Hofer 2000. A fuzzy logic model of fracture healing. J. Biomech. 33(8):961–968.PubMedCrossRefGoogle Scholar
  3. 3.
    Andreykiv, A., F. Van Keulen, and P. Prendergast 2008. Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells. Biomech. Model. Mechanobiol. 7(6):443–461.PubMedCrossRefGoogle Scholar
  4. 4.
    Androjna, C., B. Fort, M. Zborowski, and R. J. Midura 2014. Pulsed electromagnetic field treatment enhances healing callus biomechanical properties in an animal model of osteoporotic fracture. Bioelectromagnetics, 35(6):396–405.PubMedCrossRefGoogle Scholar
  5. 5.
    Assiotis, A., N. P. Sachinis, and B. E. Chalidis 2012. Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature. J. Orthop. Surg. Res. 7(1):1.CrossRefGoogle Scholar
  6. 6.
    Atalay, Y., N. Gunes, M. D. Guner, V. Akpolat, M. S. Celik, and R. Guner 2015. Pentoxifylline and electromagnetic field improved bone fracture healing in rats. Drug Des. Dev. Ther. 9:5195–5201.CrossRefGoogle Scholar
  7. 7.
    Bailón-Plaza, A. and M. C. van der Meulen 2003. Beneficial effects of moderate, early loading and adverse effects of delayed or excessive loading on bone healing. J.Biomech. 36(8):1069–1077.PubMedCrossRefGoogle Scholar
  8. 8.
    Bailón-Plaza, A. and M. C. Vander Meulen 2001. A mathematical framework to study the effects of growth factor influences on fracture healing. J.Theor. Biol. 212(2):191–209.PubMedCrossRefGoogle Scholar
  9. 9.
    Barker, A., R. Dixon, W. Sharrard, and M. Sutcliffe 1984. Pulsed magnetic field therapy for tibial non-union: interim results of a double-blind trial. The Lancet, 323(8384):994–996.CrossRefGoogle Scholar
  10. 10.
    Barnaba, S., R. Papalia, L. Ruzzini, A. Sgambato, N. Maffulli, and V. Denaro 2013. Effect of pulsed electromagnetic fields on human osteoblast cultures. Physiother. Res. Int. 18(2):109–114.PubMedCrossRefGoogle Scholar
  11. 11.
    Bassett, C. A. L. 1967. Biologic significance of piezoelectricity. Calcif. Tissue Res. 1(1):252–272.CrossRefGoogle Scholar
  12. 12.
    Bassett, C. A. L. 1982. Pulsing electromagnetic fields: a new method to modify cell behavior in calcified and noncalcified tissues. Calcif. Tissue Int. 34(1):1–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Bassett, C. A. L. 1993. Beneficial effects of electromagnetic fields. J. Cell. Biochem. 51(4):387–393.PubMedCrossRefGoogle Scholar
  14. 14.
    Bassett, C., S. Mitchell, and S. Gaston 1981. Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J. Bone Joint Surg. Am. 63(4):511–523.PubMedCrossRefGoogle Scholar
  15. 15.
    Bassett, C., R. Pawluk, and A. Pilla 1974. Acceleration of fracture repair by electromagnetic fields. A surgically noninvasive method. Ann. N Y Acad. Sci. 238:242–262.PubMedCrossRefGoogle Scholar
  16. 16.
    Beck, B. R., G. O. Matheson, G. Bergman, T. Norling, M. Fredericson, A. R. Hoffman, and R. Marcus 2008. Do capacitively coupled electric fields accelerate tibial stress fracture healing? A randomized controlled trial. Am. J. Sports Med. 36(3):545–553.PubMedCrossRefGoogle Scholar
  17. 17.
    Behrens, S. B., M. E. Deren, and K. O. Monchik 2013. A review of bone growth stimulation for fracture treatment. Curr. Orthop. Pract. 24(1):84–91.CrossRefGoogle Scholar
  18. 18.
    Bernhardt, J. 1979. The direct influence of electromagnetic fields on nerve-and muscle cells of man within the frequency range of 1 hz to 30 mhz. Radiat. Environ. Biophys. 16(4):309–323.PubMedCrossRefGoogle Scholar
  19. 19.
    Betti, E., S. Marchetti , R. Cadossi , C. Faldini, and A. Faldini. Effect of stimulation by low-frequency pulsed electromagnetic fields in subjects with fracture of the femoral neck. In: 1999. In: Electricity and Magnetism in Biology and Medicine, edited by F. Bersani. Springer: New York, 1999, pp. 853–855CrossRefGoogle Scholar
  20. 20.
    Biomet ®. Biomet ®orthopak ® non-invasive bone growth stimulator system.Google Scholar
  21. 21.
    Brighton, C. T., W. Wang, R. Seldes, G. Zhang, and S. R. Pollack 2001. Signal transduction in electrically stimulated bone cells. J. Bone Joint Surg. Am. 83(10):1514–1523.PubMedCrossRefGoogle Scholar
  22. 22.
    Byrne, D. P., D. Lacroix, and P. J. Prendergast 2011. Simulation of fracture healing in the tibia: Mechanoregulation of cell activity using a lattice modeling approach. J. Orthop. Res. 29(10):1496–1503.PubMedCrossRefGoogle Scholar
  23. 23.
    Carlier, A., L. Geris, J. Lammens, and H. Van Oosterwyck 2015. Bringing computational models of bone regeneration to the clinic. Wiley Interdiscip. Rev. Syst. Biol. Med. 7(4):183–194.PubMedCrossRefGoogle Scholar
  24. 24.
    Carter, D. R., G. S. Beaupre, N. J. J. Giori, J. A. J. A. Helms, and G. S. Beaupré 1998. Mechanobiology of skeletal regeneration. Clin. Orthop. Relat. Res. 355(355):S41–55.CrossRefGoogle Scholar
  25. 25.
    Ceccarelli, G., N. Bloise, M. Mantelli, G. Gastaldi, L. Fassina, M. G. Cusella De Angelis, D. Ferrari, M. Imbriani, and L. Visai 2013. AA comparative analysis of the in vitro effects of pulsed electromagnetic field treatment on osteogenic differentiation of two different mesenchymal cell lineages. BioRes. Open Access 2(4):283–294.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Chao, E. Y. S., N. Inoue, U. Ripamonti, and S. Fenwick 2003. Biophysical stimulation of bone fracture repair, regeneration and remodelling. Eur. Cells Mater. 6(1979):72–85.CrossRefGoogle Scholar
  27. 27.
    Checa, S. and P. J. Prendergast 2009. A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann. Biomed. Eng. 37(1):129–145.PubMedCrossRefGoogle Scholar
  28. 28.
    Chen, C.-H., Y.-S. Lin, Y.-C. Fu, C.-K. Wang, S.-C. Wu, G.-J. Wang, R. Eswaramoorthy, Y.-H. Wang, C.-Z. Wang, Y.-H. Wang, and Others 2013. Electromagnetic fields enhance chondrogenesis of human adipose-derived stem cells in a chondrogenic microenvironment in vitro. J. Appl. Physiol. 114(5):647–655.PubMedCrossRefGoogle Scholar
  29. 29.
    Chen, G., F. Niemeyer, T. Wehner, U. Simon, M. A. Schuetz, M. J. Pearcy, and L. E. Claes 2009. Simulation of the nutrient supply in fracture healing. J. Biomech. 42(15):2575–2583.PubMedCrossRefGoogle Scholar
  30. 30.
    Claes, L., P. Augat, G. Suger, and H. J. Wilke 1997. Influence of size and stability of the osteotomy gap on the success of fracture healing. J. Orthop. Res. 15(4):577–584.PubMedCrossRefGoogle Scholar
  31. 31.
    Claes, L. E. and C. A. Heigele 1999. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomech. 32(3):255–266.PubMedCrossRefGoogle Scholar
  32. 32.
    Claes, L., S. Recknagel, and A. Ignatius 2012. Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol. 8(3):133–143.PubMedCrossRefGoogle Scholar
  33. 33.
    Clement, N., A. Duckworth, L. Biant, M. McQueen, et al. 2017. The changing epidemiology of fall-related fractures in adults. Injury, 48(4):819–824.PubMedCrossRefGoogle Scholar
  34. 34.
    De Haas, W. G., A. Beupr, H. Cameron, and E. English 1986. The canadian experience with pulsed magnetic fields in the treatment of ununited tibial fractures. Clinical Rrthopaedics and Related Research, 208:55–58.Google Scholar
  35. 35.
    De Haas, W. G., M. A. Lazarovici, and D. M. Morrison 1979. The effect of low frequency magnetic fields on the healing of the osteotomized rabbit radius. Clin. Orthop. Relat. Res. (145):245–251.Google Scholar
  36. 36.
    Dimitriou, R., E. Tsiridis, and P. V. Giannoudis 2005. Current concepts of molecular aspects of bone healing. Injury, 36(12):1392–1404.PubMedCrossRefGoogle Scholar
  37. 37.
    Einhorn, T. A. 2005. The science of fracture healing. J. Orthop.Trauma 19(10 Suppl):S4–S6.PubMedCrossRefGoogle Scholar
  38. 38.
    Faldini, C., M. Cadossi, D. Luciani, E. Betti, E. Chiarello, and S. Giannini 2010. Electromagnetic bone growth stimulation in patients with femoral neck fractures treated with screws: prospective randomized double-blind study. Curr. Orthop. Pract. 21(3):282–287.CrossRefGoogle Scholar
  39. 39.
    Fu, Y.-C., C.-C. Lin, J.-K. Chang, C.-H. Chen, I.-C. Tai, G.-J. Wang, and M.-L. Ho 2014. A novel single pulsed electromagnetic field stimulates osteogenesis of bone marrow mesenchymal stem cells and bone repair. PloS ONE, 9(3):e91581.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Funk, R. H. W., T. Monsees, and N. Özkucur 2009. Electromagnetic effects - From cell biology to medicine. Progress in Histochemistry and Cytochemistry, 43(4):177–264.PubMedCrossRefGoogle Scholar
  41. 41.
    Geris, L. 2014. Regenerative orthopaedics: In vitro, in vivo ... in silico. Int. Orthop. 38(9):1771–1778.PubMedCrossRefGoogle Scholar
  42. 42.
    Geris, L., A. Gerisch, J. V. Sloten, R. Weiner, and H. V. Oosterwyck 2008. Angiogenesis in bone fracture healing: a bioregulatory model. J. Theor. Biol. 251(1):137–158.PubMedCrossRefGoogle Scholar
  43. 43.
    Geris, L., Y. Guyot, J. Schrooten, and I. Papantoniou 2016. In silico regenerative medicine: how computational tools allow regulatory and financial challenges to be addressed in a volatile market. Interface Focus, 6(2):20150105.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Geris, L., J. Vander Sloten, and H. Van Oosterwyck 2009. In silico biology of bone modelling and remodelling: regeneration. Philos. Trans. R. Soc. A 367(1895):2031–2053.CrossRefGoogle Scholar
  45. 45.
    Giannoudis, P., S. Psarakis, and G. Kontakis 2007. Can we accelerate fracture healing?: a critical analysis of the literature. Injury, 38(1):S81–S89.PubMedCrossRefGoogle Scholar
  46. 46.
    Grace, K. L., W. J. Revell, and M. Brookes 1998. The effects of pulsed electromagnetism on fresh fracture healing: osteochondral repair in the rat femoral groove. Orthopaedics 21(3): 297–302.Google Scholar
  47. 47.
    Grodzinsky, A. 2011. Field, Forces and Flows in Biological Systems. London: Garland Science.Google Scholar
  48. 48.
    Gupta, A. K., K. P. Srivastava, S. Avasthi, et al. 2009. Pulsed electromagnetic stimulation in nonunion of tibial diaphyseal fractures. Indian J. Orthop. 43(2):156.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gómez-Benito, M. J., J. M. García-Aznar, J. H. Kuiper, and M. Doblaré 2005. Influence of fracture gap size on the pattern of long bone healing: a computational study. J. Theor. Biol. 235(1):105–119.PubMedCrossRefGoogle Scholar
  50. 50.
    De Haas, W., J. Watson, and D. Morrison 1980. Non-invasive treatment of ununited fractures of the tibia using electrical stimulation. Bone Joint J. 62(4):465–470.CrossRefGoogle Scholar
  51. 51.
    Haddad, J. B., A. G. Obolensky, and P. Shinnick 2007. The biologic effects and the therapeutic mechanism of action of electric and electromagnetic field stimulation on bone and cartilage: new findings and a review of earlier work. J. Altern. Complement. Med. 13(5):485–490.PubMedCrossRefGoogle Scholar
  52. 52.
    Hak, D. J., D. Fitzpatrick, J. A. Bishop, J. L. Marsh, S. Tilp, R. Schnettler, H. Simpson, and V. Alt 2014. Delayed union and nonunions: epidemiology, clinical issues, and financial aspects. Injury, 45:S3–S7.PubMedCrossRefGoogle Scholar
  53. 53.
    Heermeier, K., M. Spanner, J. Träger, R. Gradinger, P. G. Strauss, W. Kraus, and J. Schmidt 1998. Effects of extremely low frequency electromagnetic field (EMF) on collagen type I mRNA expression and extracellular matrix synthesis of human osteoblastic cells. Bioelectromagnetics, 19(4):222–231.PubMedCrossRefGoogle Scholar
  54. 54.
    Hinsenkamp, M., F. Burny, M. Donkerwolcke, and E. Coussaert 1984. Electromagnetic stimulation of fresh fractures treated with hoffmann® external fixation. Orthopedics, 7(3):411–416.PubMedGoogle Scholar
  55. 55.
    Ibiwoye, M. O., K. A. Powell, M. D. Grabiner, T. E. Patterson, Y. Sakai, M. Zborowski, A. Wolfman, and R. J. Midura 2004. Bone mass is preserved in a critical-sized osteotomy by low energy pulsed electromagnetic fields as quantitated by in vivo micro-computed tomography. J. Orthop. Res. 22(5):1086–1093.PubMedCrossRefGoogle Scholar
  56. 56.
    Inoue, N., I. Ohnishi, D. Chen, L. W. Deitz, J. D. Schwardt, and E. Chao 2002. Effect of pulsed electromagnetic fields (PEMF) on late-phase osteotomy gap healing in a canine tibial model. J. Orthop. Res. 20(5):1106–1114.PubMedCrossRefGoogle Scholar
  57. 57.
    Isaksson, H. 2012. Recent advances in mechanobiological modeling of bone regeneration. Mech. Res. Commun. 42:22–31.CrossRefGoogle Scholar
  58. 58.
    Isaksson, H., C. C. van Donkelaar, R. Huiskes, J. Yao, and K. Ito 2008. Determining the most important cellular characteristics for fracture healing using design of experiments methods. J. Theor. Biol. 255(1):26–39.PubMedCrossRefGoogle Scholar
  59. 59.
    Isaksson, H., W. Wilson, C. C. van Donkelaar, R. Huiskes, and K. Ito 2006. Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. J. Biomech. 39(8):1507–1516.PubMedCrossRefGoogle Scholar
  60. 60.
    Jansen, J. H. W., O. P. van der Jagt, B. J. Punt, J. A. N. Verhaar, J. P. T. M. van Leeuwen, H. Weinans, and H. Jahr 2010. Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study. BMC Musculoskelet. Disord. 11(1):1.CrossRefGoogle Scholar
  61. 61.
    Kaivosoja, E., V. Sariola, Y. Chen, and Y. T. Konttinen 2015. The effect of pulsed electromagnetic fields and dehydroepiandrosterone on viability and osteo-induction of human mesenchymal stem cells. J. Tissue Eng. Regen. Med. 9(1):31–40.PubMedCrossRefGoogle Scholar
  62. 62.
    Kalfas, I. H. 2001. Principles of bone healing. Neurosurg. Focus 10(4):E1.PubMedCrossRefGoogle Scholar
  63. 63.
    Kirkpatrick, C., V. Krump-Konvalinkova, R. Unger, F. Bittinger, M. Otto, and K. Peters 2002. Tissue response and biomaterial integration: the efficacy of in vitro methods. Biomol. Eng. 19(2):211–217.PubMedCrossRefGoogle Scholar
  64. 64.
    Lacroix, D., P. J. Prendergast, G. Li, and D. Marsh 2002. Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med. Biol. Eng. Comput. 40(1):14–21.PubMedCrossRefGoogle Scholar
  65. 65.
    Little, D. G., M. Ramachandran, and A. Schindeler 2007. The anabolic and catabolic responses in bone repair. Bone Joint J. 89(4):425–433.CrossRefGoogle Scholar
  66. 66.
    Luo, F., T. Hou, Z. Zhang, Z. Xie, X. Wu, and J. Xu 2012. Effects of pulsed electromagnetic field frequencies on the osteogenic differentiation of human mesenchymal stem cells. Orthopedics, 35(4):e526–e531.PubMedCrossRefGoogle Scholar
  67. 67.
    Markov, M. S. 2007. Pulsed electromagnetic field therapy history, state of the art and future. The Environmentalist, 27(4):465–475.CrossRefGoogle Scholar
  68. 68.
    Mayer-Wagner, S., A. Passberger, B. Sievers, J. Aigner, B. Summer, T. S. Schiergens, V. Jansson, and P. E. Müller 2011. Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells. Bioelectromagnetics, 32(4):283–290.PubMedCrossRefGoogle Scholar
  69. 69.
    Maziarz, A., B. Kocan, M. Bester, S. Budzik, M. Cholewa, T. Ochiya, and A. Banas 2016. How electromagnetic fields can influence adult stem cells: positive and negative impacts. Stem Cell Res. Ther. 7(1):1.CrossRefGoogle Scholar
  70. 70.
    Midura, R. J., M. O. Ibiwoye, K. A. Powell, Y. Sakai, T. Doehring, M. D. Grabiner, T. E. Patterson, M. Zborowski, and A. Wolfman 2005. Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies. J. Orthop. Res. 23(5):1035–1046.PubMedCrossRefGoogle Scholar
  71. 71.
    Milde, F., M. Bergdorf, and P. Koumoutsakos 2008. A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys. J. 95(7):3146–60.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Moore, A. and D. Burris 2014. An analytical model to predict interstitial lubrication of cartilage in migrating contact areas. J. Biomech. 47(1):148–153.PubMedCrossRefGoogle Scholar
  73. 73.
    Nandra, R., L. Grover, and K. Porter 2016. Fracture non-union epidemiology and treatment. Trauma, 18(1):3–11.CrossRefGoogle Scholar
  74. 74.
    Nasr, S., S. Hunt, N. A. Duncan, et al. 2013. Effect of screw position on bone tissue differentiation within a fixed femoral fracture. J. Biomed. Sci. Eng. 6(12):71.CrossRefGoogle Scholar
  75. 75.
    Nunamaker, D. M. 1998. Experimental models of fracture repair. Clin. Orthop. Relat. Res. 355:S56–S65.CrossRefGoogle Scholar
  76. 76.
    Ongaro, A., A. Pellati, L. Bagheri, C. Fortini, S. Setti, and M. De Mattei 2014. Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Bioelectromagnetics, 35(6):426–436.PubMedCrossRefGoogle Scholar
  77. 77.
    Orthofix ®. Magnetic properties of materials.Google Scholar
  78. 78.
    Orthofix ®. Products & tissue forms.Google Scholar
  79. 79.
    Ossatec ®. Bone growth stimulator.Google Scholar
  80. 80.
    Panagopoulos, D. J., A. Karabarbounis, and L. H. Margaritis 2002. Mechanism for action of electromagnetic fields on cells. Biochem. Biophys. Res. Commun. 298(1):95–102.PubMedCrossRefGoogle Scholar
  81. 81.
    Pasco, J. A., S. E. Lane, S. L. Brennan-Olsen, K. L. Holloway, E. N. Timney, G. Bucki-Smith, A. G. Morse, A. G. Dobbins, L. J. Williams, N. K. Hyde, et al. 2015. The epidemiology of incident fracture from cradle to senescence. Calcif. Tissue Int. 97(6):568–576.PubMedCrossRefGoogle Scholar
  82. 82.
    Peiffer, V., A. Gerisch, D. Vandepitte, H. Van Oosterwyck, and L. Geris 2011. A hybrid bioregulatory model of angiogenesis during bone fracture healing. Biomech. Model. Mechanobiol. 10(3):383–395.PubMedCrossRefGoogle Scholar
  83. 83.
    Petecchia, L., F. Sbrana, R. Utzeri, M. Vercellino, C. Usai, L. Visai, M. Vassalli, and P. Gavazzo 2015. Electro-magnetic field promotes osteogenic differentiation of BM-hMSCs through a selective action on Ca2+-related mechanisms. Sci. Rep. doi:  https://doi.org/10.1038/srep13856 PubMedPubMedCentralGoogle Scholar
  84. 84.
    Phillips, A. M. 2005. Overview of the fracture healing cascade. Injury, 36 (3):S5–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Pivonka, P. and C. R. Dunstan 2012. Role of mathematical modeling in bone fracture healing. BoneKEY Rep. doi:  https://doi.org/10.1038/bonekey.2012.221 PubMedPubMedCentralGoogle Scholar
  86. 86.
    Pivonka, P. and S. V. Komarova 2010. Mathematical modeling in bone biology: from intracellular signaling to tissue mechanics. Bone, 47(2):181–189.PubMedCrossRefGoogle Scholar
  87. 87.
    Pérez, M. A. and P. J. Prendergast 2007. Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation. J. Biomech. 40(10):2244–2253.PubMedCrossRefGoogle Scholar
  88. 88.
    Ross, C. L., M. Siriwardane, G. Almeida-Porada, C. D. Porada, P. Brink, G. J. Christ, and B. S. Harrison 2015. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. Stem Cell Res. 15(1):96–108.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ryaby, J. T. 1998. Clinical effects of electromagnetic and electric fields on fracture healing. Clin. Orthop. Relat. Res. 355:S205–S215.CrossRefGoogle Scholar
  90. 90.
    Schwartz, Z., B. Simon, M. Duran, G. Barabino, R. Chaudhri, and B. Boyan 2008. Pulsed electromagnetic fields enhance bmp-2 dependent osteoblastic differentiation of human mesenchymal stem cells. J. Orthop. Res. 26(9):1250–1255.PubMedCrossRefGoogle Scholar
  91. 91.
    Scott, G. and J. King 1994. A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones. J. Bone Joint Surg. Am. 76(6):820–826.PubMedCrossRefGoogle Scholar
  92. 92.
    Sharrard, W., M. Sutcliffe, M. Robson, and A. Maceachern 1982. The treatment of fibrous non-union of fractures by pulsing electromagnetic stimulation. Bone Joint J. 64(2):189–193.CrossRefGoogle Scholar
  93. 93.
    Shefelbine, S. J., P. Augat, L. Claes, and U. Simon 2005. Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. J. Biomech. 38(12):2440–2450.PubMedCrossRefGoogle Scholar
  94. 94.
    Shi, H.-F., J. Xiong, Y.-X. Chen, J.-F. Wang, X.-S. Qiu, Y.-H. Wang, and Y. Qiu 2013. Early application of pulsed electromagnetic field in the treatment of postoperative delayed union of long-bone fractures: a prospective randomized controlled study. BMC Musculoskelet. Disord. 14(1):1.CrossRefGoogle Scholar
  95. 95.
    Simon, U., P. Augat, M. Utz, and L. Claes 2003. Simulation of tissue development and vascularisation in the callus healing process. Trans. Annu. Meet. Orthop. Res. Soc. 28:O299.Google Scholar
  96. 96.
    Simon, U., P. Augat, M. Utz, and L. Claes 2011. A numerical model of the fracture healing process that describes tissue development and revascularisation. Comput. Methods Biomech. Biomed. Eng. 14(1):79–93.CrossRefGoogle Scholar
  97. 97.
    Simonis, R., E. Parnell, P. Ray, and J. Peacock 2003. Electrical treatment of tibial non-union: a prospective, randomised, double-blind trial. Injury, 34(5):357–362.PubMedCrossRefGoogle Scholar
  98. 98.
    Steinberg, F. U. 1980. The effects of immobilization on bone. In The Immobilized Patient, pp.  33–63. Springer.Google Scholar
  99. 99.
    Sun, L.-Y., D.-K. Hsieh, P.-C. Lin, H.-T. Chiu, and T.-W. Chiou 2010. Pulsed electromagnetic fields accelerate proliferation and osteogenic gene expression in human bone marrow mesenchymal stem cells during osteogenic differentiation. Bioelectromagnetics, 31(3):209–219.PubMedGoogle Scholar
  100. 100.
    Sun, L.-Y., D.-K. Hsieh, T.-C. Yu, H.-T. Chiu, S.-F. Lu, G.-H. Luo, T. K. Kuo, O. K. Lee, and T.-W. Chiou 2009. Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells. Bioelectromagnetics, 30(4):251–260.PubMedCrossRefGoogle Scholar
  101. 101.
    Tsiridis, E., N. Upadhyay, and P. Giannoudis 2007. Molecular aspects of fracture healing: Which are the important molecules? Injury, 38(SUPPL. 1): S11–S25.PubMedCrossRefGoogle Scholar
  102. 102.
    Vavva, M. G., K. N. Grivas, A. Carlier, D. Polyzos, L. Geris, H. Van Oosterwyck, and D. I. Fotiadis. A mechano-regulatory model for bone healing predictions under the influence of ultrasound. In Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. p. 921, 2015bGoogle Scholar
  103. 103.
    Vavva, M. G., K. Grivas, D. Polyzos, D. I. Fotiadis, A. Carlier, L. Geris, and H. Van Oosterwyck. A mathematical model for bone healing predictions under the ultrasound effect. In Ultrasonic Characterization of Bone (ESUCB), 2015 6th European Symposium on IEEE, 2015a, pp. 1–4.Google Scholar
  104. 104.
    Vecchia, P., R. Matthes, G. Ziegelberger, J. Lin, R. Saunders, and A. Swerdlow. Exposure to high frequency electromagnetic fields, biological effects and health consequences (100 khz-300 ghz). International Commission on Non-Ionizing Radiation Protection. 2009Google Scholar
  105. 105.
    Vetter, A., F. Witt, O. Sander, G. Duda, and R. Weinkamer 2012. The spatio-temporal arrangement of different tissues during bone healing as a result of simple mechanobiological rules. Biomech. Model. Mechanobiol. 11(1–2):147–160.PubMedCrossRefGoogle Scholar
  106. 106.
    Walther, M., F. Mayer, W. Kafka, and N. Schütze 2007. Effects of weak, low-frequency pulsed electromagnetic fields (bemer type) on gene expression of human mesenchymal stem cells and chondrocytes: an in vitro study. Electromagn. Biol. Med. 26(3):179–190.PubMedCrossRefGoogle Scholar
  107. 107.
    Watts, J. J., J. Abimanyi-Ochom, and K. M. Sanders 2013. Osteoporosis costing all australians: a new burden of disease analysis-2012 to 2022. Melbourne: Osteoporosis AustraliaGoogle Scholar
  108. 108.
    Wehner, T., L. Claes, F. Niemeyer, D. Nolte, and U. Simon 2010. Influence of the fixation stability on the healing time a numerical study of a patient-specific fracture healing process. Clin. Biomech. 25(6):606–612.CrossRefGoogle Scholar
  109. 109.
    Wilson, C. J., M. A. Schütz, and D. R. Epari 2016. Computational simulation of bone fracture healing under inverse dynamisation. Biomech. Model. Mechanobiol. 16(1): 1–10.Google Scholar
  110. 110.
    Wraighte, P. J. and B. E. Scammell 2006. Principles of fracture healing. Surgery (Oxford), 24(6):198–207.CrossRefGoogle Scholar
  111. 111.
    Zamanian, A. and C. Hardiman 2005. Electromagnetic radiation and human health: a review of sources and effects. High Freq. Electron. 4(3):16–26.Google Scholar
  112. 112.
    Zhang, Y., D. Khan, J. Delling, and E. Tobiasch 2012. Mechanisms underlying the osteo- and adipo-differentiation of human mesenchymal stem cells. Sci. World J. 2012:793823.Google Scholar
  113. 113.
    Zhou, J., L. G. Ming, B. F. Ge, J. Q. Wang, R. Q. Zhu, Z. Wei, H. P. Ma, C. J. Xian, and K. M. Chen 2011. Effects of 50Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone, 49(4):753–761.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Electrical and Biomedical Engineering, School of EngineeringRMIT UniversityMelbourneAustralia
  2. 2.St Vincent’s Department of SurgeryThe University of MelbourneFitzroyAustralia
  3. 3.School of Chemistry, Physics and Mechanical EngineeringQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations