Annals of Biomedical Engineering

, Volume 46, Issue 4, pp 616–626 | Cite as

VascuTrainer: A Mobile and Disposable Bioreactor System for the Conditioning of Tissue-Engineered Vascular Grafts

  • Frederic Wolf
  • Diana M. Rojas González
  • Ulrich Steinseifer
  • Markus Obdenbusch
  • Werner Herfs
  • Christian Brecher
  • Stefan Jockenhoevel
  • Petra Mela
  • Thomas Schmitz-Rode


In vitro tissue engineering of vascular grafts requires dynamic conditioning in a bioreactor system for in vitro tissue maturation and remodeling to receive a mechanically adequate and hemocompatible implant. The goal of the current work was to develop a bioreactor system for the conditioning of vascular grafts which is (i) able to create a wide range of flow, pressure and frequency conditions, including physiological ones; (ii) compact and easy to assemble; (iii) transportable; (iv) disposable. The system is driven by a small centrifugal pump controlled via a custom-made control unit, which can also be operated on batteries to allow for autonomous transportation. To show the potential of the newly developed bioreactor system small-caliber vascular composite grafts (n = 5, internal diameter = 3 mm, length = 12.5 cm) were fabricated using a fibrin scaffold embedding human umbilical artery smooth muscle cells and a polyvinylidene fluoride warp-knitted macroporous mesh. Subsequently, the vascular grafts were endothelialized and mounted in the bioreactor system for conditioning. The conditioning parameters remained within the predefined range over the complete conditioning period and during operation on batteries as tested for up to 25 h. Fabrication and pre-conditioning under arterial pressure and shear stress conditions resulted in robust and hemocompatible tissue-engineered vascular grafts. Analysis of immunohistochemical stainings against extracellular matrix and cell-specific proteins revealed collagen I and collagen III deposition. The luminal surface was confluently covered with endothelial cells. The developed bioreactor system showed cytocompatibility and pH, pO2, pCO2, glucose and lactate stayed constant. Sterility was maintained during the complete fabrication process of the vascular grafts. The potential of a versatile and mobile system and its functionality by conditioning tissue-engineered vascular grafts under physiological pressure and flow conditions could be demonstrated.


Tissue engineering Tissue-engineered blood vessel Arterial substitute Mechanical conditioning Transportable bioreactor 



Funded by the Excellence Initiative of the German federal and state governments in the framework of the i3tm Seed Fund projects (Funding Number: SF_16-6-01) and Step2Projects. We thank Dennis Faßbaender, Institute of Applied Medical Engineering, for his valuable contributions to the development of the pump controller.

Conflict of interest

The authors declare that no competing financial or other interests have influenced this study. None of the authors is financially affiliated with any of the companies mentioned.

Supplementary material

10439_2018_1977_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (PDF 1470 kb)


  1. 1.
    Boyle, E. M., T. G. Canty, E. N. Morgan, W. Yun, T. H. Pohlman, and E. D. Verrier. Treating myocardial ischemia-reperfusion injury by targeting endothelial cell transcription. Ann. Thorac. Surg. 68:1949–1953, 1999.CrossRefPubMedGoogle Scholar
  2. 2.
    Boyle, E. M., T. H. Pohlman, C. J. Cornejo, and E. D. Verrier. Endothelial cell injury in cardiovascular surgery: ischemia-reperfusion. Ann. Thorac. Surg. 62:1868–1875, 1996.CrossRefPubMedGoogle Scholar
  3. 3.
    Carden, D. L., and D. N. Granger. Pathophysiology of ischemia-reperfusion injury. J. Pathol. 190:255–266, 2000.CrossRefPubMedGoogle Scholar
  4. 4.
    Cardinal, K. O. H., G. T. Bonnema, H. Hofer, J. K. Barton, D. Ph, S. K. Williams, and D. Ph. Tissue-engineered vascular grafts as in vitro blood vessel mimics for the evaluation of endothelialization of intravascular devices. Tissue Eng. 12:3431–3438, 2006.CrossRefPubMedGoogle Scholar
  5. 5.
    Diamantouros, S. E., L. G. Hurtado-Aguilar, T. Schmitz-Rode, P. Mela, and S. Jockenhoevel. Pulsatile perfusion bioreactor system for durability testing and compliance estimation of tissue engineered vascular grafts. Ann. Biomed. Eng. 41:1979–1989, 2013.CrossRefPubMedGoogle Scholar
  6. 6.
    Gong, X., H. Liu, X. Ding, M. Liu, X. Li, L. Zheng, X. Jia, G. Zhou, Y. Zou, J. Li, X. Huang, and Y. Fan. Physiological pulsatile flow culture conditions to generate functional endothelium on a sulfated silk fibroin nanofibrous scaffold. Biomaterials 35:4782–4791, 2014.CrossRefPubMedGoogle Scholar
  7. 7.
    Gui, L., M. J. Boyle, Y. M. Kamin, A. H. Huang, B. C. Starcher, C. A. Miller, M. J. Vishnevetsky, and L. E. Niklason. Construction of tissue-engineered small-diameter vascular grafts in fibrin scaffolds in 30 days. Tissue Eng. Part A 20:1499–1507, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hahn, M. S., M. K. McHale, E. Wang, R. H. Schmedlen, and J. L. West. Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts. Ann. Biomed. Eng. 35:190–200, 2007.CrossRefPubMedGoogle Scholar
  9. 9.
    Hibino, N., E. McGillicuddy, G. Matsumura, Y. Ichihara, Y. Naito, C. Breuer, and T. Shinoka. Late-term results of tissue-engineered vascular grafts in humans. J. Thorac. Cardiovasc. Surg. 139:431–436.e2, 2010.Google Scholar
  10. 10.
    Huang, A. H., Y.-U. Lee, E. A. Calle, M. Boyle, B. C. Starcher, J. D. Humphrey, and L. E. Niklason. Design and use of a novel bioreactor for regeneration of biaxially stretched tissue-engineered vessels. Tissue Eng. Part C Methods 21:841–851, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Isenberg, B. C., C. Williams, and R. T. Tranquillo. Endothelialization and flow conditioning of fibrin-based media-equivalents. Ann. Biomed. Eng. 34:971–985, 2006.CrossRefPubMedGoogle Scholar
  12. 12.
    Iwasaki, K., K. Kojima, S. Kodama, A. C. Paz, M. Chambers, M. Umezu, and C. A. Vacanti. Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor. Circulation 118:S52–S57, 2008.CrossRefPubMedGoogle Scholar
  13. 13.
    Koch, S., T. C. Flanagan, J. S. Sachweh, F. Tanios, H. Schnoering, T. Deichmann, V. Ellä, M. Kellomäki, N. Gronloh, T. Gries, R. Tolba, T. Schmitz-Rode, and S. Jockenhoevel. Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation. Biomaterials 31:4731–4739, 2010.CrossRefPubMedGoogle Scholar
  14. 14.
    Konig, G., T. N. McAllister, N. Dusserre, S. A. Garrido, C. Iyican, A. Marini, A. Fiorillo, H. Avila, W. Wystrychowski, K. Zagalski, M. Maruszewski, A. L. Jones, L. Cierpka, L. M. de la Fuente, and N. L’Heureux. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30:1542–1550, 2009.CrossRefPubMedGoogle Scholar
  15. 15.
    Koo, D. D. H., K. I. Welsh, N. E. J. West, K. M. Channon, A. J. Penington, J. A. Roake, P. J. Morris, and S. V. Fuggle. Endothelial cell protection against ischemia/reperfusion injury by lecithinized superoxide dismutase. Kidney Int. 60:786–796, 2001.CrossRefPubMedGoogle Scholar
  16. 16.
    L’Heureux, N., T. McAllister, and L. de la Fuente. Tissue-engineered blood vessel for adult arterial revascularization. N. Engl. J. Med. 357:1451–1453, 2007.CrossRefPubMedGoogle Scholar
  17. 17.
    Lawson, J. H., M. H. Glickman, M. Ilzecki, T. Jakimowicz, A. Jaroszynski, E. K. Peden, A. J. Pilgrim, H. L. Prichard, M. Guziewicz, S. Przywara, J. Szmidt, J. Turek, W. Witkiewicz, N. Zapotoczny, T. Zubilewicz, and L. E. Niklason. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet 387:2026–2034, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Manevich, Y., A. B. U. Al-mehdi, V. Muzykantov, A. B. Fisher, A. Al-mehdi, V. Muzykan-, A. B. Fisher, A. J. Physiol, H. Circ, and H. Physiol. Oxidative burst and NO generation as initial response to ischemia in flow-adapted endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 280:2126–2135, 2001.CrossRefGoogle Scholar
  19. 19.
    Martin, I., D. Wendt, and M. Heberer. The role of bioreactors in tissue engineering. Trends Biotechnol. 22:80–86, 2004.CrossRefPubMedGoogle Scholar
  20. 20.
    McCulloch, A. D., A. B. Harris, C. E. Sarraf, and M. Eastwood. New multi-cue bioreactor for tissue engineering of tubular cardiovascular samples under physiological conditions. Tissue Eng. 10:565–573, 2004.CrossRefPubMedGoogle Scholar
  21. 21.
    Mertens, M. E., S. Koch, P. Schuster, J. Wehner, Z. Wu, F. Gremse, V. Schulz, L. Rongen, F. Wolf, J. Frese, V. N. Gesché, M. van Zandvoort, P. Mela, S. Jockenhoevel, F. Kiessling, and T. Lammers. USPIO-labeled textile materials for non-invasive MR imaging of tissue-engineered vascular grafts. Biomaterials 39:155–163, 2015.CrossRefPubMedGoogle Scholar
  22. 22.
    Mold, C., and C. A. Morris. Complement activation by apoptotic endothelial cells following hypoxia/reoxygenation. Immunology 102:359–364, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Olausson, M., P. B. Patil, V. K. Kuna, P. Chougule, N. Hernandez, K. Methe, C. Kullberg-lindh, and H. Borg. Transplantation of an allogeneic vein bioengineered with autologous stem cells: a proof-of-concept study. Lancet 380:230–237, 2012.CrossRefPubMedGoogle Scholar
  24. 24.
    Pashneh-Tala, S., S. MacNeil, and F. Claeyssens. The tissue-engineered vascular graft—past, present, and future. Tissue Eng. Part B Rev. 22:68–100, 2016.Google Scholar
  25. 25.
    Song, L., Q. Zhou, P. Duan, P. Guo, D. Li, Y. Xu, S. Li, F. Luo, and Z. Zhang. Successful development of small diameter tissue-engineering vascular vessels by our novel integrally designed pulsatile perfusion-based bioreactor. PLoS One 7:e42569, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Syedain, Z. H., L. A. Meier, J. W. Bjork, A. Lee, and R. T. Tranquillo. Implantable arterial grafts from human fi broblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials 32:714–722, 2011.CrossRefPubMedGoogle Scholar
  27. 27.
    Udelsman, B. V., M. W. Maxfield, and C. K. Breuer. Tissue engineering of blood vessels in cardiovascular disease: moving towards clinical translation. Heart 99:454–460, 2013.CrossRefPubMedGoogle Scholar
  28. 28.
    Uzarski, J. S., J. Cores, and P. S. McFetridge. Physiologically modeled pulse dynamics to improve function in in vitro-endothelialized small-diameter vascular grafts. Tissue Eng. Part C Methods 21:1125–1134, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Uzarski, J. S., E. W. Scott, and P. S. McFetridge. Adaptation of endothelial cells to physiologically-modeled, variable shear stress. PLoS One 8:17–19, 2013.CrossRefGoogle Scholar
  30. 30.
    Wei, Z., K. Costa, A. B. Al-Mehdi, C. Dodia, V. Muzykantov, and A. B. Fisher. Simulated ischemia in flow-adapted endothelial cells leads to generation of reactive oxygen species and cell signaling. Circ. Res. 85:682–689, 1999.CrossRefPubMedGoogle Scholar
  31. 31.
    Wendt, D., and S. A. Riboldi. Bioreactors in tissue engineering: from basic research to automated product manufacturing. In: Fundamentals of Tissue Engineering and Regenerative Medicine. 2009, pp. 595–611.
  32. 32.
    Wendt, D., S. A. Riboldi, M. Cioffi, and I. Martin. Potential and bottlenecks of bioreactors in 3D cell culture and tissue manufacturing. Adv. Mater. 21:3352–3367, 2009.CrossRefPubMedGoogle Scholar
  33. 33.
    Wilhelmi, M., S. Jockenhoevel, and P. Mela. Bioartificial fabrication of regenerating blood vessel substitutes: requirements and current strategies. Biomed. Eng. 59:185–195, 2014.CrossRefGoogle Scholar
  34. 34.
    Williams, C., and T. M. Wick. Perfusion bioreactor for small diameter tissue-engineered arteries. Tissue Eng. 10:930–941, 2004.CrossRefPubMedGoogle Scholar
  35. 35.
    Yang, Q., G. W. He, M. J. Underwood, and C. M. Yu. Cellular and molecular mechanisms of endothelial ischemia/reperfusion injury: perspectives and implications for postischemic myocardial protection. Am. J. Transl. Res. 8:765–777, 2016.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Yazdani, S. K., B. W. Tillman, J. L. Berry, S. Soker, and R. L. Geary. The fate of an endothelium layer after preconditioning. J. Vasc. Surg. 51:174–183, 2010.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Frederic Wolf
    • 1
    • 2
  • Diana M. Rojas González
    • 1
    • 2
  • Ulrich Steinseifer
    • 3
  • Markus Obdenbusch
    • 4
  • Werner Herfs
    • 4
  • Christian Brecher
    • 4
  • Stefan Jockenhoevel
    • 1
    • 2
  • Petra Mela
    • 1
    • 2
  • Thomas Schmitz-Rode
    • 3
  1. 1.Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering & Institut für Textiltechnik (ITA)RWTH Aachen UniversityAachenGermany
  2. 2.AMIBM-Aachen-Maastricht-Institute for Biobased MaterialsMaastricht UniversityMaastrichtThe Netherlands
  3. 3.Institute of Applied Medical Engineering, Helmholtz InstituteRWTH Aachen UniversityAachenGermany
  4. 4.Laboratory of Machine Tools and Production Engineering, Department of Automation & ControlRWTH Aachen UniversityAachenGermany

Personalised recommendations