Annals of Biomedical Engineering

, Volume 47, Issue 5, pp 1223–1236 | Cite as

Transport Analysis of Engineered Liver Tissue Fabricated Using a Capsule-Based, Modular Approach

  • Ramkumar T. Annamalai
  • Howard W. T. MatthewEmail author


The bioinspired, microscale tissue engineering approach has emerged in recent years as a promising alternative to preformed scaffolds. Using this approach, complex tissues and organs can be efficiently engineered from microscale modules to replicate the intricate architecture and physiology of vascularized organs and tissues. Previously, we demonstrated assembly of a prototype, engineered liver tissue, formed by the fusion of hepatocyte-containing capsules. Here, we analyzed the effects of various controllable system parameters with the aim of predicting the operating limits of our modular tissue in high cell density, perfused cultures. Both the capsule diameter and construct height were limited by mass transfer requirements, while the shear stress on the capsule wall and the pressure drop across the packed capsule bed were dictated by the capsule diameter and permissible flow rates of the system. Our analysis predicts that capsules with a 200 µm radius can efficiently maintain hepatocytes at cell densities comparable to liver tissue. Some model predictions were validated by packed bed perfusion cultures. Flow-induced bed compaction hysteresis was tested experimentally and found to have minimal effect on flow characteristics. The effectiveness factor (η) for the overall oxygen transfer within packed beds of capsule modules was estimated to be 0.72 for all conditions. Primary hepatocytes encapsulated in the capsules exhibited normal metabolism and formed spheroids during a 7-day culture. The model predictions can be useful to study mass transfer and shear stress in high-density perfusion cultures. Overall, analysis of a perfused, capsule-based, modular tissue demonstrated the feasibility of the technology as a platform for fabrication of highly metabolic solid organs.


Hepatocyte encapsulation Perfusion bioreactor Mass transfer Shear stress Pre-vascularization Modular tissue engineering 



Funding for these studies was provided by a DRICTR award from Wayne State University, and a grant award from the National Science Foundation (CBET-1067323).

Conflict of interest

Authors have no conflict of interest to declare.


  1. 1.
    Allen, J. W., and S. N. Bhatia. Formation of steady-state oxygen gradients in vitro: application to liver zonation. Biotechnol. Bioeng. 82:253–262, 2003.CrossRefGoogle Scholar
  2. 2.
    Annamalai, R. T., D. R. Armant, and H. W. T. Matthew. A glycosaminoglycan based, modular tissue scaffold system for rapid assembly of perfusable, high cell density, engineered tissues. PLoS ONE 9:e84287, 2014.CrossRefGoogle Scholar
  3. 3.
    Auger, F. A., L. Gibot, and D. Lacroix. The pivotal role of vascularization in tissue engineering. Annu. Rev. Biomed. Eng. 15:177–200, 2013.CrossRefGoogle Scholar
  4. 4.
    Avgoustiniatos, E. S., and C. K. Colton. Design considerations in immunoisolation. In: Principles of Tissue Engineering, edited by R. P. Lanza, R. S. Langer, W. L. Chick, and R. G. Landes. Austin, TX: Academic Press, 1997, pp. 333–346.Google Scholar
  5. 5.
    Avgoustiniatos, E. S., and C. K. Colton. Effect of external oxygen mass transfer resistances on viability of immunoisolated tissue. Ann. N. Y. Acad. Sci. 831:145–167, 1997.CrossRefGoogle Scholar
  6. 6.
    Bancroft, G. N., V. I. Sikavitsas, J. van den Dolder, T. L. Sheffield, C. G. Ambrose, J. A. Jansen, and A. G. Mikos. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc. Natl. Acad. Sci. USA 99:12600–12605, 2002.CrossRefGoogle Scholar
  7. 7.
    Barakat, A. I., and D. K. Lieu. Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress. Cell Biochem. Biophys. 38:323–343, 2003.CrossRefGoogle Scholar
  8. 8.
    Bhatia, S. N., G. H. Underhill, K. S. Zaret, and I. J. Fox. Cell and tissue engineering for liver disease. Sci. Transl. Med. 6:245sr242, 2014.CrossRefGoogle Scholar
  9. 9.
    Chiu, J. J., and S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91:327–387, 2011.CrossRefGoogle Scholar
  10. 10.
    Chiu, J. J., S. Usami, and S. Chien. Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis. Ann. Med. 41:19–28, 2009.CrossRefGoogle Scholar
  11. 11.
    Davies, P. F. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pract. 6:16–26, 2009.CrossRefGoogle Scholar
  12. 12.
    Dolan, J., H. Meng, S. Singh, R. Paluch, and J. Kolega. High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment. Ann. Biomed. Eng. 39:1620–1631, 2011.CrossRefGoogle Scholar
  13. 13.
    Dolan, J. M., H. Meng, S. Singh, R. Paluch, and J. Kolega. High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment. Ann. Biomed. Eng. 39:1620–1631, 2011.CrossRefGoogle Scholar
  14. 14.
    Dvir, T., O. Levy, M. Shachar, Y. Granot, and S. Cohen. Activation of the ERK1/2 cascade via pulsatile interstitial fluid flow promotes cardiac tissue assembly. Tissue Eng. 13:2185–2193, 2007.CrossRefGoogle Scholar
  15. 15.
    Esch, M. B., H. Ueno, D. R. Applegate, and M. L. Shuler. Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Lab. Chip 16:2719–2729, 2016.CrossRefGoogle Scholar
  16. 16.
    Fogler, S. Elements of Chemical Reaction Engineering (4th ed.). Upper Saddle River: Prentice Hall, pp. 814–832, 2005.Google Scholar
  17. 17.
    Geankoplis, C. J. Transport processes and separation process principles: (includes unit operations). Upper Saddle River, NJ: Prentice Hall Professional Technical Reference, pp. 121–136, 2003.Google Scholar
  18. 18.
    Kietzmann, T. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol. 11:622–630, 2017.CrossRefGoogle Scholar
  19. 19.
    Kim, L., Y. C. Toh, J. Voldman, and H. Yu. A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab. Chip 7:681–694, 2007.CrossRefGoogle Scholar
  20. 20.
    Lee, W., C. Y. Bae, S. Kwon, J. Son, J. Kim, Y. Jeong, S. S. Yoo, and J. K. Park. Cellular hydrogel biopaper for patterned 3D cell culture and modular tissue reconstruction. Adv. Healthc. Mater. 1:635–639, 2012.CrossRefGoogle Scholar
  21. 21.
    Lin, M. C., F. Almus-Jacobs, H. H. Chen, G. C. Parry, N. Mackman, J. Y. Shyy, and S. Chien. Shear stress induction of the tissue factor gene. J. Clin. Invest. 99:737–744, 1997.CrossRefGoogle Scholar
  22. 22.
    Maidhof, R., N. Tandon, E. J. Lee, J. Luo, Y. Duan, K. Yeager, E. Konofagou, and G. Vunjak-Novakovic. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. J. Tissue Eng. Regen. Med. 6:e12–e23, 2012.CrossRefGoogle Scholar
  23. 23.
    McCormick, S. M., S. G. Eskin, L. V. McIntire, C. L. Teng, C.-M. Lu, C. G. Russell, and K. K. Chittur. DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc. Natl. Acad. Sci. USA 98:8955–8960, 2001.CrossRefGoogle Scholar
  24. 24.
    McGuigan, A. P., and M. V. Sefton. Vascularized organoid engineered by modular assembly enables blood perfusion. Proc. Natl. Acad. Sci. USA 103:11461–11466, 2006.CrossRefGoogle Scholar
  25. 25.
    Moore, Jr, J. E., C. Xu, S. Glagov, C. K. Zarins, and D. N. Ku. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atherosclerosis 110:225–240, 1994.CrossRefGoogle Scholar
  26. 26.
    Nagel, T., N. Resnick, C. F. Dewey, Jr, and M. A. Gimbrone, Jr. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler. Thromb. Vasc. Biol. 19:1825–1834, 1999.CrossRefGoogle Scholar
  27. 27.
    Niven, R. K. Physical insight into the Ergun and Wen & Yu equations for fluid flow in packed and fluidised beds. Chem. Eng. Sci. 57:527–534, 2002.CrossRefGoogle Scholar
  28. 28.
    Ohura, N., K. Yamamoto, S. Ichioka, T. Sokabe, H. Nakatsuka, A. Baba, M. Shibata, T. Nakatsuka, K. Harii, Y. Wada, T. Kohro, T. Kodama, and J. Ando. Global analysis of shear stress-responsive genes in vascular endothelial cells. J. Atheroscler. Thromb. 10:304–313, 2003.CrossRefGoogle Scholar
  29. 29.
    Pang, Y., K. Montagne, M. Shinohara, K. Komori, and Y. Sakai. Liver tissue engineering based on aggregate assembly: efficient formation of endothelialized rat hepatocyte aggregates and their immobilization with biodegradable fibres. Biofabrication 4:045004, 2012.CrossRefGoogle Scholar
  30. 30.
    Radisic, M., L. Yang, J. Boublik, R. J. Cohen, R. Langer, L. E. Freed, and G. Vunjak-Novakovic. Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol. Heart Circ. Physiol. 286:H507–H516, 2004.CrossRefGoogle Scholar
  31. 31.
    Rotem, A., M. Toner, R. G. Tompkins, and M. L. Yarmush. Oxygen uptake rates in cultured rat hepatocytes. Biotechnol. Bioeng. 40:1286–1291, 1992.CrossRefGoogle Scholar
  32. 32.
    Rouwkema, J., N. C. Rivron, and C. A. van Blitterswijk. Vascularization in tissue engineering. Trends Biotechnol. 26:434–441, 2008.CrossRefGoogle Scholar
  33. 33.
    Sikavitsas, V. I., G. N. Bancroft, H. L. Holtorf, J. A. Jansen, and A. G. Mikos. Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc. Natl. Acad. Sci. USA 100:14683–14688, 2003.CrossRefGoogle Scholar
  34. 34.
    Surapaneni, S., T. Pryor, M. D. Klein, and H. W. Matthew. Rapid hepatocyte spheroid formation: optimization and long-term function in perfused microcapsules. ASAIO J. 43:M848–M853, 1997.CrossRefGoogle Scholar
  35. 35.
    Tardy, Y., N. Resnick, T. Nagel, M. A. Gimbrone, Jr, and C. F. Dewey, Jr. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler. Thromb. Vasc. Biol. 17:3102–3106, 1997.CrossRefGoogle Scholar
  36. 36.
    Tiruvannamalai Annamalai, R., D. R. Mertz, E. L. Daley, and J. P. Stegemann. Collagen type II enhances chondrogenic differentiation in agarose-based modular microtissues. Cytotherapy 18:263–277, 2016.CrossRefGoogle Scholar
  37. 37.
    Tiruvannamalai-Annamalai, R., D. R. Armant, and H. W. T. Matthew. A glycosaminoglycan based, modular tissue scaffold system for rapid assembly of perfusable, high cell density, engineered tissues. PLoS ONE 9:e84287, 2014.CrossRefGoogle Scholar
  38. 38.
    TiruvannamalaiAnnamalai, R., A. Y. Rioja, A. J. Putnam, and J. P. Stegemann. Vascular network formation by human microvascular endothelial cells in modular fibrin microtissues. ACS Biomater. Sci. Eng. 2:1914–1925, 2016.CrossRefGoogle Scholar
  39. 39.
    Wybenga, D. R., J. Di Giorgio, and V. J. Pileggi. Manual and automated methods for urea nitrogen measurement in whole serum. Clin. Chem. 17:891–895, 1971.Google Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • Ramkumar T. Annamalai
    • 1
  • Howard W. T. Matthew
    • 1
    • 2
    Email author
  1. 1.Department of Biomedical EngineeringWayne State UniversityDetroitUSA
  2. 2.Department of Chemical Engineering and Materials ScienceWayne State UniversityDetroitUSA

Personalised recommendations