Advertisement

Emerging Innovative Wound Dressings

  • Makram E. Aljghami
  • Sundas Saboor
  • Saeid Amini-NikEmail author
Article
  • 153 Downloads

Abstract

The skin provides a protective barrier to the body against the environment. Ineffective healing of damaged skin can cause a chronic wound which would increase the risk of infection and associated complications. The use of wound dressings to protect the wound and provide an optimal environment for wound repair is a common practice in the burn clinic. While traditional wound healing dressings have substantially changed the wound outcome, wound healing complications are still a challenge to healthcare. Advancements in tissue engineering, biomaterial sciences, and stem cell biology led to the development of novel dressings that not only dress the wounds but also actively contribute to the process of healing. This review discusses the various properties of the emerging wound dressings that are designed in attempts to improve wound care upon skin injury.

Keywords

Wound healing Smart dressing Tissue regeneration Emerging dressings 

Notes

Acknowledgments

We thank Medicine by Design-EMHSeed and Ontario Institute for Regenerative Medicine for supporting the project.

References

  1. 1.
    Abboud, E. C., J. C. Settle, T. B. Legare, J. E. Marcet, D. J. Barillo, and J. E. Sanchez. Silver-based dressings for the reduction of surgical site infection: review of current experience and recommendation for future studies. Burns 40:S30–S39, 2014.Google Scholar
  2. 2.
    Agren, M. S. Zinc in wound repair. Arch. Dermatol. 135:1273–1274, 1999.Google Scholar
  3. 3.
    Ahn, S., C. O. Chantre, A. R. Gannon, J. U. Lind, P. H. Campbell, T. Grevesse, B. B. O’Connor, and K. K. Parker. Soy protein/cellulose nanofiber scaffolds mimicking skin extracellular matrix for enhanced wound healing. Adv. Healthc. Mater. 7:1701175, 2018.Google Scholar
  4. 4.
    Ashcroft, G. S., T. Greenwell-Wild, M. A. Horan, S. M. Wahl, and M. W. Ferguson. Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am. J. Pathol. 155:1137–1146, 1999.Google Scholar
  5. 5.
    Ashcroft, G. S., S. J. Mills, K. Lei, L. Gibbons, M.-J. Jeong, M. Taniguchi, M. Burow, M. A. Horan, S. M. Wahl, and T. Nakayama. Estrogen modulates cutaneous wound healing by downregulating macrophage migration inhibitory factor. J. Clin. Investig. 111:1309–1318, 2003.Google Scholar
  6. 6.
    Atiyeh, B. S., J. Ioannovich, C. A. Al-Amm, and K. A. El-Musa. Management of acute and chronic open wounds: the importance of moist environment in optimal wound healing. Curr. Pharm. Biotechnol. 3:179–195, 2002.Google Scholar
  7. 7.
    Augustine, R., A. Augustine, N. Kalarikkal, and S. Thomas. Fabrication and characterization of biosilver nanoparticles loaded calcium pectinate nano-micro dual-porous antibacterial wound dressings. Progr Biomater 5:223–235, 2016.Google Scholar
  8. 8.
    Avijgan, M. Phytotherapy: an alternative treatment for non-healing ulcers. J. Wound Care 13:157–158, 2004.Google Scholar
  9. 9.
    Barki, K. G., A. Das, S. Dixith, P. D. Ghatak, S. Mathew-Steiner, E. Schwab, S. Khanna, D. J. Wozniak, S. Roy, and C. K. Sen. Electric field based dressing disrupts mixed-species bacterial biofilm infection and restores functional wound healing. Ann. Surg. 2017.  https://doi.org/10.1097/SLA.0000000000002504.Google Scholar
  10. 10.
    Ben-Shalom, N., Z. Nevo, A. Patchornik, and D. Robinson. Novel injectable chitosan mixtures forming hydrogels. Google Patents, 2012.Google Scholar
  11. 11.
    Bishop, S., M. Walker, A. Rogers, and W. Chen. Importance of moisture balance at the wound-dressing interface. J. Wound Care 12:125–128, 2003.Google Scholar
  12. 12.
    Boateng, J. S., K. H. Matthews, H. N. Stevens, and G. M. Eccleston. Wound healing dressings and drug delivery systems: a review. J. Pharm. Sci. 97:2892–2923, 2008.Google Scholar
  13. 13.
    Cen, L., W. Liu, L. Cui, W. Zhang, and Y. Cao. Collagen tissue engineering: development of novel biomaterials and applications. Pediatr. Res. 63:492, 2008.Google Scholar
  14. 14.
    Chantre, C. O., P. H. Campbell, H. M. Golecki, A. T. Buganza, A. K. Capulli, L. F. Deravi, S. Dauth, S. P. Sheehy, J. A. Paten, and K. Gledhill. Production-scale fibronectin nanofibers promote wound closure and tissue repair in a dermal mouse model. Biomaterials 166:96–108, 2018.Google Scholar
  15. 15.
    Chen, H., G. Lan, L. Ran, Y. Xiao, K. Yu, B. Lu, F. Dai, D. Wu, and F. Lu. A novel wound dressing based on a Konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydr. Polym. 183:70–80, 2018.Google Scholar
  16. 16.
    Cheng, J. Z., A. Farrokhi, A. Ghahary, and R. B. Jalili. Therapeutic use of stem cells in treatment of burn injuries. J. Burn Care Res. 39:175–182, 2018.Google Scholar
  17. 17.
    Choi, S. M., K. M. Lee, H. J. Kim, I. K. Park, H. J. Kang, H. C. Shin, D. Baek, Y. Choi, K. H. Park, and J. W. Lee. Effects of structurally stabilized EGF and bFGF on wound healing in type I and type II diabetic mice. Acta Biomater. 66:325–334, 2018.Google Scholar
  18. 18.
    Choi, S. M., H. A. Ryu, K.-M. Lee, H. J. Kim, I. K. Park, W. J. Cho, H.-C. Shin, W. J. Choi, and J. W. Lee. Development of stabilized growth factor-loaded hyaluronate-collagen dressing (HCD) matrix for impaired wound healing. Biomater. Res. 20:9, 2016.Google Scholar
  19. 19.
    Cole, W. Human acellular dermal matrix paired with silver-zinc coupled electroceutical dressing results in rapid healing of complicated diabetic wounds of mixed etiology: a novel case series. Wounds 28:241–247, 2016.Google Scholar
  20. 20.
    Dai, T., M. Tanaka, Y. Y. Huang, and M. R. Hamblin. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev. Anti Infect. Ther. 9:857–879, 2011.Google Scholar
  21. 21.
    Darby, I. A., B. Laverdet, F. Bonté, and A. Desmoulière. Fibroblasts and myofibroblasts in wound healing. Clin. Cosmet. Investig. Dermatol. 7:301, 2014.Google Scholar
  22. 22.
    Dash, M., F. Chiellini, R. M. Ottenbrite, and E. Chiellini. Chitosan: a versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36:981–1014, 2011.Google Scholar
  23. 23.
    Daunton, C., S. Kothari, L. Smith, and D. Steele. A history of materials and practices for wound management. Wound Pract. Res. 20:174, 2012.Google Scholar
  24. 24.
    d’Ayala, G. G., M. Malinconico, and P. Laurienzo. Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules 13:2069–2106, 2008.Google Scholar
  25. 25.
    Dhivya, S., V. V. Padma, and E. Santhini. Wound dressings: a review. Biomedicine 5:22, 2015.Google Scholar
  26. 26.
    Doillon, C. J., and F. H. Silver. Collagen-based wound dressing: effects of hyaluronic acid and firponectin on wound healing. Biomaterials 7:3–8, 1986.Google Scholar
  27. 27.
    Dong, Y., M. Rodrigues, X. Li, S. H. Kwon, N. Kosaric, S. Khong, Y. Gao, W. Wang, and G. C. Gurtner. Injectable and tunable gelatin hydrogels enhance stem cell retention and improve cutaneous wound healing. Adv. Func. Mater. 27:1606619, 2017.Google Scholar
  28. 28.
    Dumville, J. C., S. Deshpande, S. O’Meara, and K. Speak. Hydrocolloid dressings for healing diabetic foot ulcers. Cochrane Database Syst. Rev., 2012.Google Scholar
  29. 29.
    Dumville, J. C., M. O. Soares, S. O’Meara, and N. Cullum. Systematic review and mixed treatment comparison: dressings to heal diabetic foot ulcers. Diabetologia 55:1902–1910, 2012.Google Scholar
  30. 30.
    Edmonds, M., J. L. Lázaro-Martínez, J. M. Alfayate-García, J. Martini, J.-M. Petit, G. Rayman, R. Lobmann, L. Uccioli, A. Sauvadet, and S. Bohbot. Sucrose octasulfate dressing versus control dressing in patients with neuroischaemic diabetic foot ulcers (Explorer): an international, multicentre, double-blind, randomised, controlled trial. Lancet Diabetes Endocrinol. 6:186–196, 2018.Google Scholar
  31. 31.
    Eming, S. A., T. Krieg, and J. M. Davidson. Inflammation in wound repair: molecular and cellular mechanisms. J. Investig. Dermatol. 127:514–525, 2007.Google Scholar
  32. 32.
    Enoch, S., and D. J. Leaper. Basic science of wound healing. Surg. Oxf. Int. Ed. 26:31–37, 2008.Google Scholar
  33. 33.
    Erdag, G., and R. L. Sheridan. Fibroblasts improve performance of cultured composite skin substitutes on athymic mice. Burns 30:322–328, 2004.Google Scholar
  34. 34.
    Faucher, N., H. Safar, M. Baret, A. Philippe, and R. Farid. Superabsorbent dressings for copiously exuding wounds. Br. J. Nurs. 21:S22–S28, 2012.Google Scholar
  35. 35.
    Field, C. K., and M. D. Kerstein. Overview of wound healing in a moist environment. Am. J. Surg. 167:S2–S6, 1994.Google Scholar
  36. 36.
    Fischer, L. J., S. McIlhenny, T. Tulenko, N. Golesorkhi, P. Zhang, R. Larson, J. Lombardi, I. Shapiro, and P. J. DiMuzio. Endothelial differentiation of adipose-derived stem cells: effects of endothelial cell growth supplement and shear force. J. Surg. Res. 152:157–166, 2009.Google Scholar
  37. 37.
    Fleck, C. A., and R. Simman. Modern collagen wound dressings: function and Purpose. J. Am. Col. Certif. Wound Spec. 2:50–54, 2010.Google Scholar
  38. 38.
    Fonder, M. A., G. S. Lazarus, D. A. Cowan, B. Aronson-Cook, A. R. Kohli, and A. J. Mamelak. Treating the chronic wound: a practical approach to the care of nonhealing wounds and wound care dressings. J. Am. Acad. Dermatol. 58:185–206, 2008.Google Scholar
  39. 39.
    Gantwerker, E. A., and D. B. Hom. Skin: histology and physiology of wound healing. Clin. Plast. Surg. 39:85–97, 2012.Google Scholar
  40. 40.
    Greenhalgh, D. G. The role of growth factors in wound healing. J. Trauma 41:159–167, 1996.Google Scholar
  41. 41.
    Grice, E. A., H. H. Kong, S. Conlan, C. B. Deming, J. Davis, A. C. Young, G. G. Bouffard, R. W. Blakesley, P. R. Murray, and E. D. Green. Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192, 2009.Google Scholar
  42. 42.
    Guarderas, F., Y. Leavell, T. Sengupta, M. Zhukova, and T. L. Megraw. Assessment of chicken-egg membrane as a dressing for wound healing. Adv. Skin Wound Care 29:131–134, 2016.Google Scholar
  43. 43.
    Hilton, J., D. Williams, B. Beuker, D. Miller, and K. Harding. Wound dressings in diabetic foot disease. Clin. Infect. Dis. 39:S100–S103, 2004.Google Scholar
  44. 44.
    Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64:18–23, 2012.Google Scholar
  45. 45.
    Hollinworth, H., and M. Collier. Nurses’ views about pain and trauma at dressing changes: results of a national survey. J. Wound Care 9:369–373, 2000.Google Scholar
  46. 46.
    Holm-Pedersen, P., and B. Zederfeldt. Granulation tissue formation in subcutaneously implanted cellulose sponges in young and old rats. Scand. J. Plast. Reconstr. Surg. 5:13–16, 1971.Google Scholar
  47. 47.
    Hopewell, J. The skin: its structure and response to ionizing radiation. Int. J. Radiat. Biol. 57:751–773, 1990.Google Scholar
  48. 48.
    Hsu, B. B., S. R. Hagerman, K. Jamieson, S. A. Castleberry, W. Wang, E. Holler, J. Y. Ljubimova, and P. T. Hammond. Multifunctional self-assembled films for rapid hemostat and sustained anti-infective delivery. ACS Biomater. Sci. Eng. 1:148–156, 2015.Google Scholar
  49. 49.
    Huang, T., H. Xu, K. Jiao, L. Zhu, H. R. Brown, and H. Wang. A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv. Mater. 19:1622–1626, 2007.Google Scholar
  50. 50.
    Hunt, T. K., H. Hopf, and Z. Hussain. Physiology of wound healing. Adv Skin Wound Care 13:6, 2000.Google Scholar
  51. 51.
    Jankowska, D. A., M. B. Bannwarth, C. Schulenburg, G. Faccio, K. Maniura-Weber, R. M. Rossi, L. Scherer, M. Richter, and L. F. Boesel. Simultaneous detection of pH value and glucose concentrations for wound monitoring applications. Biosens. Bioelectron. 87:312–319, 2017.Google Scholar
  52. 52.
    Jayakumar, R., M. Prabaharan, P. T. Sudheesh Kumar, S. V. Nair, and H. Tamura. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 29:322–337, 2011.Google Scholar
  53. 53.
    Jeffcoate, W. J., P. Price, and K. G. Harding. Wound healing and treatments for people with diabetic foot ulcers. Diabetes 20:S78–S89, 2004.Google Scholar
  54. 54.
    Jones, V., J. E. Grey, and K. G. Harding. Wound dressings. BMJ 332:777–780, 2006.Google Scholar
  55. 55.
    Jung, R., Y. Kim, H.-S. Kim, and H.-J. Jin. Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles. J. Biomater. Sci. Polym. Ed. 20:311–324, 2009.Google Scholar
  56. 56.
    Kamoun, E. A., E. R. S. Kenawy, and X. Chen. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 8:217–233, 2017.Google Scholar
  57. 57.
    Kassal, P., M. Zubak, G. Scheipl, G. J. Mohr, M. D. Steinberg, and I. M. Steinberg. Smart bandage with wireless connectivity for optical monitoring of pH. Sens. Actuators B 246:455–460, 2017.Google Scholar
  58. 58.
    Khamrai, M., S. L. Banerjee, and P. P. Kundu. Modified bacterial cellulose based self-healable polyeloctrolyte film for wound dressing application. Carbohydr. Polym. 174:580–590, 2017.Google Scholar
  59. 59.
    Kim, H., S. Park, G. Housler, V. Marcel, S. Cross, and M. Izadjoo. An overview of the efficacy of a next generation electroceutical wound care device. Mil. Med. 181:184–190, 2016.Google Scholar
  60. 60.
    Kim, I.-Y., S.-J. Seo, H.-S. Moon, M.-K. Yoo, I.-Y. Park, B.-C. Kim, and C.-S. Cho. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 26:1–21, 2008.Google Scholar
  61. 61.
    Kolarsick, P. A. J., M. A. Kolarsick, and C. Goodwin. Anatomy and physiology of the skin. J. Dermatol. Nurs. Assoc. 3:203–213, 2011.Google Scholar
  62. 62.
    Kragh, J. F., J. K. Aden, J. Steinbaugh, M. Bullard, and M. A. Dubick. Gauze vs XSTAT in wound packing for hemorrhage control. Am. J. Emerg. Med. 33:974–976, 2015.Google Scholar
  63. 63.
    Krejner, A., and T. Grzela. Modulation of matrix metalloproteinases MMP-2 and MMP-9 activity by hydrofiber-foam hybrid dressing-relevant support in the treatment of chronic wounds. Central-Eur. J. Immunol. 40:391, 2015.Google Scholar
  64. 64.
    Krieger, B. R., D. M. Davis, J. E. Sanchez, J. J. Mateka, V. N. Nfonsam, J. C. Frattini, and J. E. Marcet. The use of silver nylon in preventing surgical site infections following colon and rectal surgery. Dis. Colon Rectum 54:1014–1019, 2011.Google Scholar
  65. 65.
    Ksander, G., and Y. Ogawa. Collagen wound healing matrices and process for their production. Google Patents, 1990.Google Scholar
  66. 66.
    Lammers, G., G. S. Tjabringa, J. Schalkwijk, W. F. Daamen, and T. H. van Kuppevelt. A molecularly defined array based on native fibrillar collagen for the assessment of skin tissue engineering biomaterials. Biomaterials 30:6213–6220, 2009.Google Scholar
  67. 67.
    Lansdown, A. B. G. Bioactive Dressings: Old Ideas, New Technology. London: MA Healthcare, 2007.Google Scholar
  68. 68.
    Lee, K. Y., and D. J. Mooney. Hydrogels for tissue engineering. Chem. Rev. 101:1869–1879, 2001.Google Scholar
  69. 69.
    Lee, K. Y., and D. J. Mooney. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37:106–126, 2012.Google Scholar
  70. 70.
    Leung, C. Y. P. Microstructure-based systems, apparatus, and methods for wound closure. US Patent App, 2017.Google Scholar
  71. 71.
    Li, J., J. Chen, and R. Kirsner. Pathophysiology of acute wound healing. Clin. Dermatol. 25:9–18, 2007.Google Scholar
  72. 72.
    Liechty, K. W., H. B. Kim, N. S. Adzick, and T. M. Crombleholme. Fetal wound repair results in scar formation in interleukin-10-deficient mice in a syngeneic murine model of scarless fetal wound repair. J. Pediatr. Surg. 35:866–872, 2000.Google Scholar
  73. 73.
    Lin, S., H. Yuk, T. Zhang, G. A. Parada, H. Koo, C. Yu, and X. Zhao. Stretchable hydrogel electronics and devices. Adv. Mater. 28:4497–4505, 2016.Google Scholar
  74. 74.
    Lorenz, H., and N. Adzick. Scarless skin wound repair in the fetus. West. J. Med. 159:350, 1993.Google Scholar
  75. 75.
    Majno, G. The healing hand: man and wound in the ancient world. Plast. Reconstr. Surg. 57:230, 1976.Google Scholar
  76. 76.
    Malafaya, P. B., G. A. Silva, and R. L. Reis. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev. 59:207–233, 2007.Google Scholar
  77. 77.
    Malmsjö, M., L. Gustafsson, S. Lindstedt Ingemansson, and R. Ingemansson. Negative pressure wound therapy-associated tissue trauma and pain: a controlled in vivo study comparing foam and gauze dressing removal by immunohistochemistry for substance p and calcitonin gene-related peptide in the wound edge. Ostomy-Wound Manag. 57:30–35, 2011.Google Scholar
  78. 78.
    Mano, J. F., G. A. Silva, H. S. Azevedo, P. B. Malafaya, R. A. Sousa, S. S. Silva, L. F. Boesel, J. M. Oliveira, T. C. Santos, A. P. Marques, N. M. Neves, and R. L. Reis. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J. R. Soc. Interface 4:999–1030, 2007.Google Scholar
  79. 79.
    Martin, P. Wound healing: aiming for perfect skin regeneration. Science 276:75–81, 1997.Google Scholar
  80. 80.
    Matsumura, H., R. Imai, N. Ahmatjan, Y. Ida, M. Gondo, D. Shibata, and K. Wanatabe. Removal of adhesive wound dressing and its effects on the stratum corneum of the skin: comparison of eight different adhesive wound dressings. Int Wound J 11:50–54, 2014.Google Scholar
  81. 81.
    Metcalf, D., D. Parsons, and P. Bowler. A next-generation antimicrobial wound dressing: a real-life clinical evaluation in the UK and Ireland. J. Wound Care 25:132–138, 2016.Google Scholar
  82. 82.
    Metcalf, D. G., D. Parsons, and P. G. Bowler. Clinical safety and effectiveness evaluation of a new antimicrobial wound dressing designed to manage exudate, infection and biofilm. Int. Wound J. 14:203–213, 2017.Google Scholar
  83. 83.
    Mi, F.-L., S.-S. Shyu, Y.-B. Wu, S.-T. Lee, J.-Y. Shyong, and R.-N. Huang. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22:165–173, 2001.Google Scholar
  84. 84.
    Mi, F.-L., Y.-C. Tan, H.-F. Liang, and H.-W. Sung. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials 23:181–191, 2002.Google Scholar
  85. 85.
    Mills, S. J., J. J. Ashworth, S. C. Gilliver, M. J. Hardman, and G. S. Ashcroft. The sex steroid precursor DHEA accelerates cutaneous wound healing via the estrogen receptors. J. Investig. Dermatol. 125:1053–1062, 2005.Google Scholar
  86. 86.
    Morimoto, N., S. Suzuki, Y. Saso, K. Tomihata, T. Taira, Y. Takahashi, and N. Morikawa. Viability and function of autologous and allogeneic fibroblasts seeded in dermal substitutes after implantation. Wound Repair Regen. 13:A14, 2005.Google Scholar
  87. 87.
    Mostafalu, P., G. Kiaee, G. Giatsidis, A. Khalilpour, M. Nabavinia, M. R. Dokmeci, S. Sonkusale, D. P. Orgill, A. Tamayol, and A. Khademhosseini. A textile dressing for temporal and dosage controlled drug delivery. Adv. Funct. Mater. 27:1702399, 2017.Google Scholar
  88. 88.
    Moura, L. I., A. M. Dias, E. Carvalho, and H. C. de Sousa. Recent advances on the development of wound dressings for diabetic foot ulcer treatment: a review. Acta Biomater. 9:7093–7114, 2013.Google Scholar
  89. 89.
    Mozalewska, W., R. Czechowska-Biskup, A. K. Olejnik, R. A. Wach, P. Ulański, and J. M. Rosiak. Chitosan-containing hydrogel wound dressings prepared by radiation technique. Radiat. Phys. Chem. 134:1–7, 2017.Google Scholar
  90. 90.
    Münter, K.-C., S. De Lange, T. Eberlein, A. Andriessen, and M. Abel. Handling properties of a superabsorbent dressing in the management of patients with moderate-to-very high exuding wounds. J. Wound Care 27:246–253, 2018.Google Scholar
  91. 91.
    Nwomeh, B. C., D. R. Yager, and I. Cohen. Physiology of the chronic wound. Clin. Plast. Surg. 25:341–356, 1998.Google Scholar
  92. 92.
    Pandit, A. S., and D. S. Faldman. Effect of oxygen treatment and dressing oxygen permeability on wound healing. Wound Repair Regen. 2:130–137, 1994.Google Scholar
  93. 93.
    Parenteau-Bareil, R., R. Gauvin, and F. Berthod. Collagen-based biomaterials for tissue engineering applications. Materials 3:1863–1887, 2010.Google Scholar
  94. 94.
    Percival, S. L., S. McCarty, J. A. Hunt, and E. J. Woods. The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair Regen. 22:174–186, 2014.Google Scholar
  95. 95.
    Radhakumary, C., M. Antonty, and K. Sreenivasan. Drug loaded thermoresponsive and cytocompatible chitosan based hydrogel as a potential wound dressing. Carbohydr. Polym. 83:705–713, 2011.Google Scholar
  96. 96.
    Richard, J., J. Martini, M. B. Faraill, J. M’Bemba, M. Lepeut, F. Truchetet, S. Ehrler, S. Schuldiner, A. Sauvadet, and S. Bohbot. Management of diabetic foot ulcers with a TLC-NOSF wound dressing. J. Wound Care 21:142–147, 2012.Google Scholar
  97. 97.
    Richmond, N. A., A. D. Maderal, and A. C. Vivas. Evidence-based management of common chronic lower extremity ulcers. Dermatol. Ther. 26:187–196, 2013.Google Scholar
  98. 98.
    Rodero, M. P., and K. Khosrotehrani. Skin wound healing modulation by macrophages. Int. J. Clin. Exp. Pathol. 3:643, 2010.Google Scholar
  99. 99.
    Rogozinski, W. J. Modifiable, semi-permeable, wound dressing. Google Patents., 1993.Google Scholar
  100. 100.
    Rowlatt, U. Intrauterine wound healing in a 20 week human fetus. Virchows Arch A 381:353–361, 1979.Google Scholar
  101. 101.
    Sánchez-Sánchez, R., A. Brena-Molina, V. Martínez-López, Y. Melgarejo-Ramírez, L. Tamay de Dios, R. Gómez-García, M. L. Reyes-Frías, L. Rodríguez-Rodríguez, D. Garciadiego-Cázares, H. Lugo-Martínez, C. Ibarra, M. E. Martínez-Pardo, and C. Velasquillo-Martínez. Generation of two biological wound dressings as a potential delivery system of human adipose-derived mesenchymal stem cells. ASAIO J 61:718–725, 2015.Google Scholar
  102. 102.
    Sannino, A., C. Demitri, and M. Madaghiele. Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373, 2009.Google Scholar
  103. 103.
    Sato, Y., T. Ohshima, and T. Kondo. Regulatory role of endogenous interleukin-10 in cutaneous inflammatory response of murine wound healing. Biochem. Biophys. Res. Commun. 265:194–199, 1999.Google Scholar
  104. 104.
    Schmid-Wendtner, M.-H., and H. C. Korting. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol. Physiol. 19:296–302, 2006.Google Scholar
  105. 105.
    Schneider, L. A., A. Korber, S. Grabbe, and J. Dissemond. Influence of pH on wound-healing: a new perspective for wound-therapy? Arch. Dermatol. Res. 298:413–420, 2007.Google Scholar
  106. 106.
    Seaman, S. Dressing selection in chronic wound management. J. Am. Podiatr. Med. Assoc. 92:24–33, 2002.Google Scholar
  107. 107.
    Segre, J. A., C. Bauer, and E. Fuchs. Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat. Genet. 22:356, 1999.Google Scholar
  108. 108.
    Sell, S. A., P. S. Wolfe, K. Garg, J. M. McCool, I. A. Rodriguez, and G. L. Bowlin. The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues. Polymers 2:522–553, 2010.Google Scholar
  109. 109.
    Shah, J. B. The history of wound care. J. Am. Col. Certif. Wound Spec. 3:65–66, 2011.Google Scholar
  110. 110.
    Shetty, S., and S. Gokul. Keratinization and its disorders. Oman Med. J. 27:348–357, 2012.Google Scholar
  111. 111.
    Shirazaki, P., J. Varshosaz, and A. Z. Kharazi. Electrospun gelatin/poly(glycerol sebacate) membrane with controlled release of antibiotics for wound dressing. Adv. Biomed. Res. 6:105, 2017.Google Scholar
  112. 112.
    Siddiqui, A. R., and J. M. Bernstein. Chronic wound infection: facts and controversies. Clin. Dermatol. 28:519–526, 2010.Google Scholar
  113. 113.
    Silver, F., V. Sharma, D. R. Berndt, and L. E. Marn. Collagen-based wound dressing and method for applying same. Google Patents., 1993.Google Scholar
  114. 114.
    Sims, S. K., S. Bowling, S. P. Dituro, B. S. Kheirabadi, and F. Butler. Management of external hemorrhage in tactical combat casualty care: the adjunctive use of XStat TM compressed hemostatic sponges. J. Spec. Oper. Med. 16:19–28, 2016.Google Scholar
  115. 115.
    Singla, R., S. Soni, P. M. Kulurkar, A. Kumari, M. S. V. Patial, Y. S. Padwad, and S. K. Yadav. In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing. Carbohydr. Polym. 155:152–162, 2017.Google Scholar
  116. 116.
    Singla, R., S. Soni, V. Patial, P. M. Kulurkar, A. Kumari, Y. S. Padwad, and S. K. Yadav. In vivo diabetic wound healing potential of nanobiocomposites containing bamboo cellulose nanocrystals impregnated with silver nanoparticles. Int. J. Biol. Macromol. 105:45–55, 2017.Google Scholar
  117. 117.
    Sipos, P., H. Gyory, K. Hagymási, P. Ondrejka, and A. Blázovics. Special wound healing methods used in ancient Egypt and the mythological background. World J. Surg. 28:211, 2004.Google Scholar
  118. 118.
    Skórkowska-Telichowska, K., M. Czemplik, A. Kulma, and J. Szopa. The local treatment and available dressings designed for chronic wounds. J. Am. Acad. Dermatol. 68:e117–e126, 2013.Google Scholar
  119. 119.
    Solway, D. R., W. A. Clark, and D. J. Levinson. A parallel open-label trial to evaluate microbial cellulose wound dressing in the treatment of diabetic foot ulcers. Int. Wound J. 8:69–73, 2011.Google Scholar
  120. 120.
    Sood, A., M. S. Granick, and N. L. Tomaselli. Wound dressings and comparative effectiveness data. Adv. Wound Care (New Rochelle) 3:511–529, 2014.Google Scholar
  121. 121.
    Soppirnath, K. S., and T. M. Aminabhavi. Water transport and drug release study from cross-linked polyacrylamide grafted guar gum hydrogel microspheres for the controlled release application. Eur. J. Pharm. Biopharm. 53:87–98, 2002.Google Scholar
  122. 122.
    Sprenger, A., S. Weber, M. Zarai, R. Engelke, J. M. Nascimento, C. Gretzmeier, M. Hilpert, M. Boerries, C. Has, H. Busch, L. Bruckner-Tuderman, and J. Dengjel. Consistency of the proteome in primary human keratinocytes with respect to gender, age, and skin localization. Mol. Cell. Proteom. 12:2509–2521, 2013.Google Scholar
  123. 123.
    Stang, D. The use of Aquacel Ag in the management of diabetic foot ulcers. The Diabetic Foot, 2004.Google Scholar
  124. 124.
    Starr, A. H. Plaster or bandage for skin application. Google Patents., 1951.Google Scholar
  125. 125.
    Stashak, T. S., E. Farstvedt, and A. Othic. Update on wound dressings: indications and best use. Clin. Tech. Equine Pract. 3:148–163, 2004.Google Scholar
  126. 126.
    Steed, D. L. The role of growth factors in wound healing. Surg. Clin. N. Am. 77:575–586, 1997.Google Scholar
  127. 127.
    Swisher, S. L., M. C. Lin, A. Liao, E. J. Leeflang, Y. Khan, F. J. Pavinatto, K. Mann, A. Naujokas, D. Young, S. Roy, M. R. Harrison, A. C. Arias, V. Subramanian, and M. M. Maharbiz. Impedance sensing device enables early detection of pressure ulcers in vivo. Nat. Commun. 6:6575, 2015.Google Scholar
  128. 128.
    Thet, N. T., D. R. Alves, J. E. Bean, S. Booth, J. Nzakizwanayo, A. E. Young, B. V. Jones, and A. T. Jenkins. Prototype development of the intelligent hydrogel wound dressing and its efficacy in the detection of model pathogenic wound biofilms. ACS Appl. Mater. Interfaces 8:14909–14919, 2016.Google Scholar
  129. 129.
    Tisosky, A. J., O. Iyoha-Bello, N. Demosthenes, G. Quimbayo, T. Coreanu, and A. Abdeen. Use of a silver nylon dressing following total hip and knee arthroplasty decreases the postoperative infection rate. JAAOS Global Res. Rev. 1:e034, 2017.Google Scholar
  130. 130.
    Tonnesen, M. G., X. Feng, and R. A. Clark. Angiogenesis in wound healing. J. Investig. Dermatol. Symposium Proceedings 1:40–46, 2000.Google Scholar
  131. 131.
    van Rijswijk, L., and J. Beitz. The traditions and terminology of wound dressings: food for thought. J. Wound Ostomy Cont. Nurs. 25:116–122, 1998.Google Scholar
  132. 132.
    Velander, P., C. Theopold, T. Hirsch, O. Bleiziffer, B. Zuhaili, M. Fossum, D. Hoeller, R. Gheerardyn, M. Chen, S. Visovatti, H. Svensson, F. Yao, and E. Eriksson. Impaired wound healing in an acute diabetic pig model and the effects of local hyperglycemia. Wound Repair Regen. 16:288–293, 2008.Google Scholar
  133. 133.
    Velnar, T., T. Bailey, and V. Smrkolj. The wound healing process: an overview of the cellular and molecular mechanisms. J. Int. Med. Res. 37:1528–1542, 2009.Google Scholar
  134. 134.
    Vowden, K. Complex wound or complex patient? Strategies for treatment. Br. J. Commun. Nurs. Suppl: S6, S8, S10 passim, 2005.Google Scholar
  135. 135.
    Wang, W., S. Lin, Y. Xiao, Y. Huang, Y. Tan, L. Cai, and X. Li. Acceleration of diabetic wound healing with chitosan-crosslinked collagen sponge containing recombinant human acidic fibroblast growth factor in healing-impaired STZ diabetic rats. Life Sci. 82:190–204, 2008.Google Scholar
  136. 136.
    Wang, Y., and P. K. Maitz. Advances and new technologies in the treatment of burn injury. Adv. Drug Deliv. Rev. 123:1–2, 2018.Google Scholar
  137. 137.
    Wang, S., H. Yang, Z. Tang, G. Long, and W. Huang. Wound dressing model of human umbilical cord mesenchymal stem cells-alginates complex promotes skin wound healing by paracrine signaling. Stem Cells Int., 2016.  https://doi.org/10.1155/2016/3269267.Google Scholar
  138. 138.
    Weller, C., and G. Sussman. Wound dressings update. J. Pharm. Pract. Res. 36:318–324, 2006.Google Scholar
  139. 139.
    Welshhans, J. L., and D. B. Hom. Soft tissue principles to minimize scarring: an overview. Facial Plast. Surg. Clin. N. Am. 25:1–13, 2017.Google Scholar
  140. 140.
    White, R. A multinational survey of the assessment of pain when removing dressings. Wounds uK 4:14, 2008.Google Scholar
  141. 141.
    Wiegand, C., T. Heinze, and U. C. Hipler. Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regen. 17:511–521, 2009.Google Scholar
  142. 142.
    Wysocki, A. B. Skin anatomy, physiology, and pathophysiology. Nurs. Clin. N. Am. 34:777–797, 1999.Google Scholar
  143. 143.
    Xu, Q., A. Sigen, Y. Gao, L. Guo, J. Creagh-Flynn, D. Zhou, U. Greiser, Y. Dong, F. Wang, H. Tai, W. Liu, W. Wang, and W. Wang. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta Biomater. 75:63–74, 2018.Google Scholar
  144. 144.
    Yanaga, H., Y. Udoh, T. Yamauchi, M. Yamamoto, K. Kiyokawa, Y. Inoue, and Y. Tai. Cryopreserved cultured epidermal allografts achieved early closure of wounds and reduced scar formation in deep partial-thickness burn wounds (DDB) and split-thickness skin donor sites of pediatric patients. Burns 27:689–698, 2001.Google Scholar
  145. 145.
    Ya-Xian, Z., T. Suetake, and H. Tagami. Number of cell layers of the stratum corneum in normal skin-relationship to the anatomical location on the body, age, sex and physical parameters. Arch. Dermatol. Res. 291:555–559, 1999.Google Scholar
  146. 146.
    Yosipovitch, G., G. L. Xiong, E. Haus, L. Sackett-Lundeen, I. Ashkenazi, and H. I. Maibach. Time-dependent variations of the skin barrier function in humans: transepidermal water loss, stratum corneum hydration, skin surface pH, and skin temperature. J. Investig. Dermatol. 110:20–23, 1998.Google Scholar
  147. 147.
    You, H. J., and S. K. Han. Cell therapy for wound healing. J. Korean Med. Sci. 29:311–319, 2014.Google Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
  2. 2.Sunnybrook Research InstituteTorontoCanada
  3. 3.Faculty of MedicineUniversity of TorontoTorontoCanada

Personalised recommendations