Evaluation of Strontium-Containing PCL-PDIPF Scaffolds for Bone Tissue Engineering: In Vitro and In Vivo Studies

  • Agustina Berenice Lino
  • Antonio Desmond McCarthy
  • Juan Manuel FernándezEmail author


Bone tissue engineering (BTE) has the general objective of restoring and improving damaged bone. A very interesting strategy for BTE is to combine an adequate polymeric scaffold with an osteoinductive compound. Strontium is a divalent cation that can substitute calcium in hydroxyapatite and induce both anabolic and anti-catabolic effects in bone. On the other hand, systemic increases in Sr2+ levels can provoke adverse cardiovascular effects. In the present study we have developed a compatibilized blend of poly-ε-caprolactone (PCL) and polydiisopropyl fumarate (PDIPF) enriched with 1% or 5% Sr2+ and evaluated the applicability of these biomaterials for BTE, both in vitro and in vivo. In vitro, whereas Blend + 5% Sr2+ was pro-inflammatory and anti-osteogenic, Blend + 1% Sr2+ released very low quantities of the cation; was not cytotoxic for cultured macrophages; and showed improved osteocompatibility when used as a substratum for primary cultures of bone marrow stromal cells. In vivo, implants with Blend + 1% Sr2+ significantly increased bone tissue regeneration and improved fibrous bridging (vs. Blend alone), while neither inducing a local inflammatory response nor increased serum levels of Sr2+. These results indicate that our compatibilized blend of PCL-PDIPF enriched with 1% Sr2+ could be useful for BTE.


Bone marrow stromal cells RAW 264.7 macrophages Poly-ε-caprolactone Polydiisopropyl fumarate Strontium Bone regeneration 



ABL is a Fellow of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. ADM is a part-time full Professor of Clinical Chemistry at National University of La Plata (UNLP), Argentina. JMF is a Member of the Carrera del Investigador of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. This study was supported by ANPCyT grants (PICT 2012-0053 to ADM, PICT 2015-1361 to ADM and PICT 2015-1030 to JMF).

Conflict of interest

All authors declare that they have no conflicts of interest.


  1. 1.
    Alfano, A. L., and J. M. Fernandez. Induction of topographical changes in PCL scaffolds for bone tissue engineering: biocompatibility and cytotoxicity evaluations. J. Biomater. Tissue Eng. 5:142–149, 2015.CrossRefGoogle Scholar
  2. 2.
    Almeida, M. M., E. P. Nani, L. N. Teixeira, D. C. Peruzzo, J. C. Joly, M. H. Napimoga, and E. F. Martinez. Strontium ranelate increases osteoblast activity. Tissue Cell 48:183–188, 2016.CrossRefGoogle Scholar
  3. 3.
    Bolland, M., and A. Grey. Ten years too long: strontium ranelate, cardiac events, and the European Medicines Agency. BMJ 354:i5109–i5117, 2016.CrossRefGoogle Scholar
  4. 4.
    Braddock, M., M. P. Houston, C. Campbell, and P. P. Ashcroft. Born again bone: tissue engineering for bone repair. Physiology 16:208–213, 2001.CrossRefGoogle Scholar
  5. 5.
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72:248–254, 1976.CrossRefGoogle Scholar
  6. 6.
    Cortizo, M. S. Polymerization of diisopropyl fumarate under microwave irradiation. J. Appl. Polym. Sci. 103:3785–3791, 2007.CrossRefGoogle Scholar
  7. 7.
    Cortizo, A. M., and S. B. Etcheverry. Vanadium derivatives act as growth factor-mimetic compounds upon differentiation and proliferation of osteoblast-like UMR106 cells. Mol. Cell. Biochem. 145:97–102, 1995.CrossRefGoogle Scholar
  8. 8.
    Cortizo, M. S., M. S. Molinuevo, and A. M. Cortizo. Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering. J. Tissue Eng. Regen. Med. 2:33–42, 2008.CrossRefGoogle Scholar
  9. 9.
    Denlinger, L. C., P. L. Fisette, K. A. Garis, G. Kwon, A. Vazquez-Torres, A. D. Simon, B. Nguyen, R. A. Proctor, P. J. Bertics, and J. A. Corbett. Regulation of inducible nitric oxide synthase expression by macrophage purinoreceptors and calcium. J. Biol. Chem. 271:337–342, 1996.CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Fernandez, J. M., M. S. Cortizo, and A. M. Cortizo. Fumarate/ceramic composite based scaffolds for tissue engineering: evaluation of hydrophylicity, degradability, toxicity and biocompatibility. J. Biomater. Tissue Eng. 4:227–234, 2014.CrossRefGoogle Scholar
  12. 12.
    Fernandez, J. M., M. S. Molinuevo, M. S. Cortizo, and A. M. Cortizo. Development of an osteoconductive PCL–PDIPF–hydroxyapatite composite scaffold for bone tissue engineering. J. Tissue Eng. Regen. Med. 5:e126–e135, 2011.CrossRefGoogle Scholar
  13. 13.
    Fernandez, J. M., M. S. Molinuevo, A. M. Cortizo, A. D. McCarthy, and M. S. Cortizo. Characterization of poly(epsilon-caprolactone)/polyfumarate blends as scaffolds for bone tissue engineering. J. Biomater. Sci. Polym. Ed. 21:1297–1312, 2010.CrossRefGoogle Scholar
  14. 14.
    Fernandez, J. M., M. S. Molinuevo, A. D. McCarthy, and A. M. Cortizo. Strontium ranelate stimulates the activity of bone-specific alkaline phosphatase: interaction with Zn2+ and Mg2+. Biometals 27:601–607, 2014.CrossRefGoogle Scholar
  15. 15.
    Fernandez, J. M., M. S. Molinuevo, C. Sedlinsky, L. Schurman, A. M. Cortizo, and A. D. McCarthy. Strontium ranelate prevents the deleterious action of advanced glycation endproducts on osteoblastic cells via calcium channel activation. Eur. J. Pharmacol. 706:41–47, 2013.CrossRefGoogle Scholar
  16. 16.
    Grillo, C. A., M. A. Reigosa, and M. A. Fernandez Lorenzo de Mele. Does over-exposure to copper ions released from metallic copper induce cytotoxic and genotoxic effects on mammalian cells? Contraception 81:343–349, 2010.CrossRefGoogle Scholar
  17. 17.
    Guidelines on Handling and Training of Laboratory Animals. Published by the Universities Federation for Animals Welfare Guidelines on Handling and Training of Laboratory Animals. In: The Biological Council of Animal Research, Welfare Panel. Guide for the Care and Use of Laboratory Animals: Eighth Edition, edited by Purl UFA. Washington, DC: The National Academies Press, 2011.Google Scholar
  18. 18.
    Hedberg, E. L., C. K. Shih, J. J. Lemoine, M. D. Timmer, M. A. K. Liebschner, J. A. Jansen, and A. G. Mikos. In vitro degradation of porous poly(propylene fumarate)/poly(dl-lactic-co-glycolic acid) composite scaffolds. Biomaterials 26:3215–3225, 2005.CrossRefGoogle Scholar
  19. 19.
    Karageorgiou, V., and D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491, 2005.CrossRefGoogle Scholar
  20. 20.
    Langer, R., and J. Vacanti. Tissue engineering. Science 260:920–926, 1993.CrossRefGoogle Scholar
  21. 21.
    Liu, X., and P. X. Ma. Polymeric scaffolds for bone tissue engineering. Ann. Biomed. Eng. 32:477–486, 2004.CrossRefGoogle Scholar
  22. 22.
    Ma, P. X., R. Zhang, G. Xiao, and R. Franceschi. Engineering new bone tissue in vitro on highly porous poly(α-hydroxyl acids)/hydroxyapatite composite scaffolds. J. Biomed. Mater. Res. 54:284–293, 2001.CrossRefGoogle Scholar
  23. 23.
    Marie, P. J. Strontium ranelate in osteoporosis and beyond: identifying molecular targets in bone cell biology. Mol. Interv. 10:305–312, 2010.CrossRefGoogle Scholar
  24. 24.
    Meka, S. R. K., S. Jain, and K. Chatterjee. Strontium eluting nanofibers augment stem cell osteogenesis for bone tissue regeneration. Colloids Surf. B 146:649–656, 2016.CrossRefGoogle Scholar
  25. 25.
    Molinuevo, M. S., S. B. Etcheverry, and A. M. Cortizo. Macrophage activation by a vanadyl-aspirin complex is dependent on L-type calcium channel and the generation of nitric oxide. Toxicology 210:205–212, 2005.CrossRefGoogle Scholar
  26. 26.
    Molinuevo, M. S., J. M. Fernandez, A. M. Cortizo, A. D. McCarthy, L. Schurman, and C. Sedlinsky. Advanced glycation end products and strontium ranelate promote osteogenic differentiation of vascular smooth muscle cells in vitro: preventive role of vitamin D. Mol. Cell. Endocrinol. 450:94–104, 2017.CrossRefGoogle Scholar
  27. 27.
    Molinuevo, M. S., L. Schurman, A. D. McCarthy, A. M. Cortizo, M. J. Tolosa, M. V. Gangoiti, V. Arnol, and C. Sedlinsky. Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies. J. Bone Miner. Res. 25:211–221, 2010.CrossRefGoogle Scholar
  28. 28.
    Morosano, M., A. Masoni, and A. Sánchez. Incidence of hip fractures in the city of Rosario, Argentina. Osteoporos Int. 16:1339–1344, 2005.CrossRefGoogle Scholar
  29. 29.
    Nair, B. P., M. Sindhu, and P. D. Nair. Polycaprolactone-laponite composite scaffold releasing strontium ranelate for bone tissue engineering applications. Colloids Surf. B 143:423–430, 2016.CrossRefGoogle Scholar
  30. 30.
    Neves, N., D. Linhares, G. Costa, C. C. Ribeiro, and M. A. Barbosa. In vivo and clinical application of strontium-enriched biomaterials for bone regeneration: a systematic review. Bone Joint Res. 6:366–375, 2017.CrossRefGoogle Scholar
  31. 31.
    Porter, J. R., T. T. Ruckh, and K. C. Popat. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol. Progr. 25:1539–1560, 2009.Google Scholar
  32. 32.
    Raschke, W. C., S. Baird, P. Ralph, and I. Nakoinz. Functional macrophage cell lines transformed by Abelson leukemia virus. Cell 15:261–267, 1978.CrossRefGoogle Scholar
  33. 33.
    Reginster, J. Y., E. Seeman, M. C. De Vernejoul, S. Adami, J. Compston, C. Phenekos, J. P. Devogelaer, M. D. Curiel, A. Sawicki, S. Goemaere, O. H. Sorensen, D. Felsenberg, and P. J. Meunier. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of Peripheral Osteoporosis (TROPOS) Study. J. Clin. Endocrinol. Metab. 90:2816–2822, 2005.CrossRefGoogle Scholar
  34. 34.
    Santana, R. B., X. Lei, B. C. Hermik, A. Salomon, D. T. Graves, and P. C. Trackman. A role for advanced glycation end products in diminished bone healing in type 1 diabetes. Diabetes 52:1502–1510, 2003.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Agustina Berenice Lino
    • 1
  • Antonio Desmond McCarthy
    • 1
  • Juan Manuel Fernández
    • 1
    • 2
    Email author
  1. 1.LIOMM (Laboratorio de Investigación en Osteopatías y Metabolismo Mineral) – Departamento de Ciencias Biológicas, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Cátedra Bioquímica Patológica, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations