Advertisement

Development of a Second-Order System for Rapid Estimation of Maximum Brain Strain

  • Lee F. Gabler
  • Jeff R. Crandall
  • Matthew B. Panzer
State-of-the-Art Modeling and Simulation of the Brain's Response to Mechanical Loads

Abstract

Diffuse brain injuries are assessed with deformation-based criteria that utilize metrics based on rotational head kinematics to estimate brain injury severity. Although numerous metrics have been proposed, many are based on empirically-derived models that use peak kinematics, which often limit their applicability to a narrow range of head impact conditions. However, over a broad range of impact conditions, brain deformation response to rotational head motion behaves similarly to a second-order mechanical system, which utilizes the full kinematic time history of a head impact. This study describes a new brain injury metric called Diffuse Axonal Multi-Axis General Evaluation (DAMAGE). DAMAGE is based on the equations of motion of a three-degree-of-freedom, coupled 2nd-order system, and predicts maximum brain strain using the directionally dependent angular acceleration time-histories from a head impact. Parameters for the effective mass, stiffness, and damping were determined using simplified rotational pulses which were applied multiaxially to a 50th percentile adult human male finite element model. DAMAGE was then validated with a separate database of 1747 head impacts including helmet, crash, and sled tests and human volunteer responses. Relative to existing rotational brain injury metrics that were evaluated in this study, DAMAGE was found to be the best predictor of maximum brain strain.

Keywords

Brain deformation Finite element model Head kinematics Second-order system 

Supplementary material

10439_2018_2179_MOESM1_ESM.pdf (90 kb)
Supplementary material 1 (PDF 89 kb)

References

  1. 1.
    Alshareef, A., J. S. Giudice, J. Forman, R. S. Salzar, and M. B. Panzer. A novel method for quantifying human in situ whole brain deformation under rotational loading using sonomicrometry. J. Neurotrauma 35(5):780–789, 2018.CrossRefGoogle Scholar
  2. 2.
    Antona-Makoshi, J., K. Mikami, M. Lindkvist, J. Davidsson, and S. Schick. Accident analysis to support the development of strategies for the prevention of brain injuries in car crashes. Accid. Anal. Prev. 117:98–105, 2018.CrossRefGoogle Scholar
  3. 3.
    Bandak, F. A. On the mechanics of impact neurotrauma: a review and critical synthesis. J. Neurotrauma 12:635–649, 1995.CrossRefGoogle Scholar
  4. 4.
    Cullen, D. K., C. M. Simon, and M. C. LaPlaca. Strain rate-dependent induction of reactive astrogliosis and cell death in three-dimensional neuronal–astrocytic co-cultures. Brain Res. 1158:103–115, 2007.CrossRefGoogle Scholar
  5. 5.
    Deck, C., and R. Willinger. The current state of the human head finite element modelling. Int. J. Veh. Saf. 4:85–112, 2009.CrossRefGoogle Scholar
  6. 6.
    Elkin, B. S., L. F. Gabler, M. B. Panzer, and G. P. Siegmund. Brain tissue strains vary with head impact location: a possible explanation for increased concussion risk in struck versus striking football players. Clin. Biomech. 2018.  https://doi.org/10.1016/j.clinbiomech.2018.03.021.Google Scholar
  7. 7.
    Gabler, L. F., J. R. Crandall, and M. B. Panzer. Assessment of kinematic brain injury metrics for predicting strain responses in diverse automotive impact conditions. Ann. Biomed. Eng. 2016.  https://doi.org/10.1007/s10439-016-1697-0.Google Scholar
  8. 8.
    Gabler, L. F., J. R. Crandall, M. B. Panzer, N. Praxl, P. Wernicke. Development of Improved Brain Injury Predictors for Diverse Impacts. In: 61st Stapp Car Crash Conference 2017.Google Scholar
  9. 9.
    Gabler, L. F., J. R. Crandall, and M. B. Panzer. Development of a metric for predicting brain strain responses using head kinematics. Ann. Biomed. Eng. 46(7):972–985, 2018.CrossRefGoogle Scholar
  10. 10.
    Gabler, L. F., H. Joodaki, J. R. Crandall, and M. B. Panzer. Development of a single-degree-of-freedom mechanical model for predicting strain-based brain injury responses. J. Biomech. Eng. 140:031002, 2018.CrossRefGoogle Scholar
  11. 11.
    Gadd, C. W. Use of a weighted-impulse criterion for estimating injury hazard. SAE Technical Paper, 1966. http://papers.sae.org/660793/.
  12. 12.
    Gennarelli, T. A., L. E. Thibault, and D. I. Graham. Diffuse axonal injury: an important form of traumatic brain damage. Neuroscientist 4:202–215, 1998.CrossRefGoogle Scholar
  13. 13.
    Goldsmith, W. Biomechanics of Head Injury. Englewood Cliffs: Prentice-Hall, pp. 585–634, 1972.Google Scholar
  14. 14.
    Harmon, K. G., J. A. Drezner, M. Gammons, K. M. Guskiewicz, M. Halstead, S. A. Herring, J. S. Kutcher, A. Pana, M. Putukian, and W. O. Roberts. American Medical Society for Sports Medicine position statement: concussion in sport. Br. J. Sports Med. 47:15–26, 2013.CrossRefGoogle Scholar
  15. 15.
    Hernandez, F., L. C. Wu, M. C. Yip, K. Laksari, A. R. Hoffman, J. R. Lopez, G. A. Grant, S. Kleiven, and D. B. Camarillo. Six degree-of-freedom measurements of human mild traumatic brain injury. Ann. Biomed. Eng. 43:1918–1934, 2015.CrossRefGoogle Scholar
  16. 16.
    Holbourn, A. H. S. Mechanics of head injuries. Lancet 242:438–441, 1943.CrossRefGoogle Scholar
  17. 17.
    J211/1: Instrumentation for Impact Test—Part 1—Electronic Instrumentation—SAE International. http://standards.sae.org/j211/1_201403/.Google Scholar
  18. 18.
    Kim, T., J. Shin, X. Ye, J. Crandall, C. Knospe, and J. Funk. Evaluation of methods for the development of representative responses and corridors from biomechanical data using mechanical models. Int. J. Crashworthiness 18:633–646, 2013.CrossRefGoogle Scholar
  19. 19.
    Kimpara, H., and M. Iwamoto. Mild traumatic brain injury predictors based on angular accelerations during impacts. Ann. Biomed. Eng. 40:114–126, 2012.CrossRefGoogle Scholar
  20. 20.
    King, A. I., K. H. Yang, L. Zhang, W. Hardy, and D. C. Viano. Is head injury caused by linear or angular acceleration., 2003. http://snell-helmets.org/docs/articles/hic/King_IRCOBI_2003.pdf.Google Scholar
  21. 21.
    Kleiven, S. Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J 51:81–114, 2007.Google Scholar
  22. 22.
    Laksari, K., M. Kurt, H. Babaee, S. Kleiven, and D. Camarillo. Mechanistic insights into human brain impact dynamics through modal analysis. Phys. Rev. Lett. 120:138101, 2018.CrossRefGoogle Scholar
  23. 23.
    Langlois, J. A., W. Rutland-Brown, and M. M. Wald. The epidemiology and impact of traumatic brain injury: a brief overview. J. Head Trauma Rehabil. 21:375–378, 2006.CrossRefGoogle Scholar
  24. 24.
    Mao, H., L. Zhang, B. Jiang, V. V. Genthikatti, X. Jin, F. Zhu, R. Makwana, A. Gill, G. Jandir, A. Singh, et al. Development of a finite element human head model partially validated with thirty five experimental cases. J. Biomech. Eng. 135:111002, 2013.CrossRefGoogle Scholar
  25. 25.
    Newman, J. A., N. Shewchenko, and E. Welbourne. A proposed new biomechanical head injury assessment function—the maximum power index. Stapp Car Crash J. 44:215–247, 2000.Google Scholar
  26. 26.
    Panzer, M. B., B. S. Myers, B. P. Capehart, and C. R. Bass. Development of a finite element model for blast brain injury and the effects of CSF cavitation. Ann. Biomed. Eng. 40:1530–1544, 2012.CrossRefGoogle Scholar
  27. 27.
    Rao, S. S., and F. F. Yap. Mechanical Vibrations. New York: Addison-Wesley, 1995.Google Scholar
  28. 28.
    Stalnaker, R. L., J. L. Fogle, and J. H. McElhaney. Driving point impedance characteristics of the head. J. Biomech. 4:127–139, 1971.CrossRefGoogle Scholar
  29. 29.
    Sullivan, S., S. A. Eucker, D. Gabrieli, C. Bradfield, B. Coats, M. R. Maltese, J. Lee, C. Smith, and S. S. Margulies. White matter tract-oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities. Biomech. Model. Mechanobiol. 14:877–896, 2015.CrossRefGoogle Scholar
  30. 30.
    Takahashi, Y., and T. Yanaoka. A Study of Injury Criteria for Brain Injuries in Traffic Accidents, 2017.Google Scholar
  31. 31.
    Takhounts, E. G., M. J. Craig, K. Moorhouse, J. McFadden, and V. Hasija. Development of brain injury criteria (Br IC). Stapp Car Crash J. 57:243–266, 2013.Google Scholar
  32. 32.
    Takhounts, E. G., V. Hasija, S. A. Ridella, S. Rowson, and S. M. Duma. Kinematic rotational brain injury criterion (BRIC), 2011. http://www-nrd.nhtsa.dot.gov/Pdf/esv/esv22/22ESV-000263.pdf.Google Scholar
  33. 33.
    Taylor, C. A. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths—United States, 2007 and 2013. MMWR Surveill. Summ. 66:1–16, 2017.CrossRefGoogle Scholar
  34. 34.
    Versace, J. A Review of the Severity Index. Warrendale: SAE International, 1971.Google Scholar
  35. 35.
    Willinger, R., L. Taleb, and C. M. Kopp. Modal and temporal analysis of head mathematical models. J. Neurotrauma 12:743–754, 1995.CrossRefGoogle Scholar
  36. 36.
    Yanaoka, T., Y. Dokko, and Y. Takahashi. Investigation on an Injury Criterion Related to Traumatic Brain Injury Primarily Induced by Head Rotation. SAE Technical Paper, 2015. http://papers.sae.org/2015-01-1439/.Google Scholar
  37. 37.
    Zhao, W., Y. Cai, Z. Li, and S. Ji. Injury prediction and vulnerability assessment using strain and susceptibility measures of the deep white matter. Biomech. Model. Mechanobiol. 16(5):1709–1727, 2017.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Lee F. Gabler
    • 1
  • Jeff R. Crandall
    • 1
  • Matthew B. Panzer
    • 1
  1. 1.Department of Mechanical and Aerospace Engineering, Center for Applied BiomechanicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations