Annals of Biomedical Engineering

, Volume 47, Issue 1, pp 257–271 | Cite as

Evaluation of Drug-Loaded Gold Nanoparticle Cytotoxicity as a Function of Tumor Vasculature-Induced Tissue Heterogeneity

  • Hunter A. Miller
  • Hermann B. FrieboesEmail author


The inherent heterogeneity of tumor tissue presents a major challenge to nanoparticle-mediated drug delivery. This heterogeneity spans from the molecular (genomic, proteomic, metabolomic) to the cellular (cell types, adhesion, migration) and to the tissue (vasculature, extra-cellular matrix) scales. In particular, tumor vasculature forms abnormally, inducing proliferative, hypoxic, and necrotic tumor tissue regions. As the vasculature is the main conduit for nanotherapy transport into tumors, vasculature-induced tissue heterogeneity can cause local inadequate delivery and concentration, leading to subpar response. Further, hypoxic tissue, although viable, would be immune to the effects of cell-cycle specific drugs. In order to enable a more systematic evaluation of such effects, here we employ computational modeling to study the therapeutic response as a function of vasculature-induced tumor tissue heterogeneity. Using data with three-layered gold nanoparticles loaded with cisplatin, nanotherapy is simulated interacting with different levels of tissue heterogeneity, and the treatment response is measured in terms of tumor regression. The results quantify the influence that varying levels of tumor vascular density coupled with the drug strength have on nanoparticle uptake and washout, and the associated tissue response. The drug strength affects the proportion of proliferating, hypoxic, and necrotic tissue fractions, which in turn dynamically affect and are affected by the vascular density. Higher drug strengths may be able to achieve stronger tumor regression but only if the intra-tumoral vascular density is above a certain threshold that affords sufficient transport. This study establishes an initial step towards a more systematic methodology to assess the effect of vasculature-induced tumor tissue heterogeneity on the response to nanotherapy.


Cancer nanotherapy Gold nanoparticles Mathematical modeling Cancer simulation Cisplatin Tumor heterogeneity Lung cancer 



HBF acknowledges partial support by the National Institutes of Health/National Cancer Institute Grant R15CA203605.

Conflict of interest

The authors declare no known conflicts of interest.


  1. 1.
    Bertrand, N., J. Wu, X. Xu, N. Kamaly, and O. C. Farokhzad. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66:2–25, 2014.CrossRefGoogle Scholar
  2. 2.
    Brahimi-Horn, M. C., and J. Pouyssegur. The hypoxia-inducible factor and tumor progression along the angiogenic pathway. Int. Rev. Cytol. 242:157–213, 2005.CrossRefGoogle Scholar
  3. 3.
    Chamseddine I. M., H. B. Frieboes, and M. Kokkolaras. Design optimization of tumor vasculature-bound nanoparticles. Sci. Rep., 2018Google Scholar
  4. 4.
    Chen, H., X. Tong, L. Lang, O. Jacobson, B. C. Yung, X. Yang, R. Bai, D. O. Kiesewetter, Y. Ma, H. Wu, G. Niu, and X. Chen. Quantification of tumor vascular permeability and blood volume by positron emission tomography. Theranostics 7:2363–2376, 2017.CrossRefGoogle Scholar
  5. 5.
    Curtis, L. T., C. G. England, M. Wu, J. Lowengrub, and H. B. Frieboes. An interdisciplinary computational/experimental approach to evaluate drug-loaded gold nanoparticle tumor cytotoxicity. Nanomedicine (Lond) 11:197–216, 2016.CrossRefGoogle Scholar
  6. 6.
    Curtis, L. T., P. Rychahou, Y. Bae, and H. B. Frieboes. A Computational/experimental assessment of antitumor activity of polymer nanoassemblies for pH-controlled drug delivery to primary and metastatic tumors. Pharm. Res. 33:2551, 2016.CrossRefGoogle Scholar
  7. 7.
    Curtis, L. T., V. H. van Berkel, and H. B. Frieboes. Pharmacokinetic/pharmacodynamic modeling of combination-chemotherapy for lung cancer. J. Theor. Biol. 448:38–52, 2018.CrossRefGoogle Scholar
  8. 8.
    Curtis, L. T., M. Wu, J. Lowengrub, P. Decuzzi, and H. B. Frieboes. Computational modeling of tumor response to drug release from vasculature-bound nanoparticles. PLoS ONE 10:e0144888, 2015.CrossRefGoogle Scholar
  9. 9.
    Decuzzi, P., R. Pasqualini, W. Arap, and M. Ferrari. Intravascular delivery of particulate systems: does geometry really matter? Pharm. Res. 26:235–243, 2009.CrossRefGoogle Scholar
  10. 10.
    England, C. G., A. M. Gobin, and H. B. Frieboes. Evaluation of uptake and distribution of gold nanoparticles in solid tumors. Eur. Phys. J. Plus 130:231, 2015.CrossRefGoogle Scholar
  11. 11.
    England, C. G., J. S. Huang, K. T. James, G. D. Zhang, A. M. Gobin, and H. B. Frieboes. Detection of phosphatidylcholine-coated gold nanoparticles in orthotopic pancreatic adenocarcinoma using hyperspectral imaging. PLoS ONE 10:e0129172, 2015.CrossRefGoogle Scholar
  12. 12.
    England, C. G., J. S. Huang, K. T. James, X. Zhang, A. M. Gobin, and H. B. Frieboes. Detection of phosphatidylcholine-coated gold nanoparticles in orthotopic pancreatic adenocarcinoma using hyperspectral imaging. PLoS ONE 10:e0129172, 2015.CrossRefGoogle Scholar
  13. 13.
    England, C. G., M. C. Miller, A. Kuttan, J. O. Trent, and H. B. Frieboes. Release kinetics of paclitaxel and cisplatin from two and three layered gold nanoparticles. Eur. J. Pharm. Biopharm. 92:120–129, 2015.CrossRefGoogle Scholar
  14. 14.
    England, C. G., T. Priest, G. Zhang, X. Sun, D. N. Patel, L. R. McNally, V. van Berkel, A. M. Gobin, and H. B. Frieboes. Enhanced penetration into 3D cell culture using two and three layered gold nanoparticles. Int. J. Nanomed. 8:3603–3617, 2013.Google Scholar
  15. 15.
    Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold solutions. Nat. Phys. Sci. 241:20–22, 1973.CrossRefGoogle Scholar
  16. 16.
    Frieboes, H. B., J. P. Sinek, O. Nalcioglu, J. P. Fruehauf, and V. Cristini. Nanotechnology in cancer drug therapy: a biocomputational approach. In: BioMEMS and Biomedical Nanotechnology, edited by M. Ferrari, A. P. Lee, and L. J. Lee. New York: Springer, 2006, pp. 435–460.CrossRefGoogle Scholar
  17. 17.
    Frieboes, H. B., M. Wu, J. Lowengrub, P. Decuzzi, and V. Cristini. A computational model for predicting nanoparticle accumulation in tumor vasculature. PLoS ONE 8:e56876, 2013.CrossRefGoogle Scholar
  18. 18.
    Gao, Y., M. Li, B. Chen, Z. Shen, P. Guo, M. G. Wientjes, and J. L. Au. Predictive models of diffusive nanoparticle transport in 3-dimensional tumor cell spheroids. AAPS J. 15:816–831, 2013.CrossRefGoogle Scholar
  19. 19.
    Godin, B., W. H. Driessen, B. Proneth, S. Y. Lee, S. Srinivasan, R. Rumbaut, W. Arap, R. Pasqualini, M. Ferrari, and P. Decuzzi. An integrated approach for the rational design of nanovectors for biomedical imaging and therapy. Adv. Genet. 69:31–64, 2010.CrossRefGoogle Scholar
  20. 20.
    Hait, W. N., and T. W. Hambley. Targeted cancer therapeutics. Cancer Res 69:1263–1267, 2009.CrossRefGoogle Scholar
  21. 21.
    Hall, R. D., T. M. Le, D. E. Haggstrom, and R. D. Gentzier. Angiogenesis inhibition as a therapeutic strategy in non-small cell lung cancer (NSCLC). Transl. Lung Cancer Res. 4:515–523, 2015.Google Scholar
  22. 22.
    Izuishi, K., K. Kato, T. Ogura, T. Kinoshita, and H. Esumi. Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy. Cancer Res. 60:6201–6207, 2000.Google Scholar
  23. 23.
    Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7:987–989, 2001.CrossRefGoogle Scholar
  24. 24.
    Kaddi, C. D., J. H. Phan, and M. D. Wang. Computational nanomedicine: modeling of nanoparticle-mediated hyperthermal cancer therapy. Nanomedicine (Lond) 8:1323–1333, 2013.CrossRefGoogle Scholar
  25. 25.
    Koziara, J. M., T. R. Whisman, M. T. Tseng, and R. J. Mumper. In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors. J Control Release 112:312–319, 2006.CrossRefGoogle Scholar
  26. 26.
    Leighl, N. B. Treatment paradigms for patients with metastatic non-small-cell lung cancer: first-, second-, and third-line. Curr. Oncol. 19:S52–58, 2012.CrossRefGoogle Scholar
  27. 27.
    Li, M., K. T. Al-Jamal, K. Kostarelos, and J. Reineke. Physiologically based pharmacokinetic modeling of nanoparticles. Acs Nano 4:6303–6317, 2010.CrossRefGoogle Scholar
  28. 28.
    Li, M., E. A. Czyszczon, and J. J. Reineke. Delineating intracellular pharmacokinetics of paclitaxel delivered by PLGA nanoparticles. Drug Deliv. Transl. Res. 3:551–561, 2013.CrossRefGoogle Scholar
  29. 29.
    Li, M., Z. Panagi, K. Avgoustakis, and J. Reineke. Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content. Int. J. Nanomed. 7:1345–1356, 2012.CrossRefGoogle Scholar
  30. 30.
    Li, M., and J. Reineke. Mathematical modelling of nanoparticle biodistribution: extrapolation among intravenous, oral and pulmonary administration routes. Int. J. Nano Biomater. 3:222–238, 2011.CrossRefGoogle Scholar
  31. 31.
    Ma, E., A. Ren, G. Baoxiang, M. Yang, C. Zhao, W. Wang, and K. Li. ROI for outlining an entire tumor is a reliable approach for quantification of lung cancer tumor vascular parameters using CT perfusion. Oncotargets Ther 9:2377–2384, 2016.Google Scholar
  32. 32.
    Macklin, P., and J. Lowengrub. Nonlinear simulation of the effect of microenvironment on tumor growth. J. Theor. Biol. 245:677–704, 2007.CrossRefGoogle Scholar
  33. 33.
    Macklin, P., and J. S. Lowengrub. A new ghost cell/level set method for moving boundary problems: application to tumor growth. J. Sci. Comput. 35:266–299, 2008.CrossRefGoogle Scholar
  34. 34.
    Macklin, P., S. McDougall, A. R. Anderson, M. A. Chaplain, V. Cristini, and J. Lowengrub. Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. 58:765–798, 2009.CrossRefGoogle Scholar
  35. 35.
    McDougall, S. R., A. R. Anderson, and M. A. Chaplain. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241:564–589, 2006.CrossRefGoogle Scholar
  36. 36.
    Miele, E., G. P. Spinelli, E. Miele, E. Di Fabrizio, E. Ferretti, S. Tomao, and A. Gulino. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int. J. Nanomed. 7:3637–3657, 2012.Google Scholar
  37. 37.
    Minchinton, A. I., and I. F. Tannock. Drug penetration in solid tumours. Nat. Rev. Cancer 6:583–592, 2006.CrossRefGoogle Scholar
  38. 38.
    Nugent, L. J., and R. K. Jain. Extravascular diffusion in normal and neoplastic tissues. Cancer Res. 44:238–244, 1984.Google Scholar
  39. 39.
    Primeau, A. J., A. Rendon, D. Hedley, L. Lilge, and I. F. Tannock. The distribution of the anticancer drug doxorubicin in relation to blood vessels in solid tumors. Clin. Cancer Res. 11:8782–8788, 2005.CrossRefGoogle Scholar
  40. 40.
    Reichel, D., L. T. Curtis, E. Ehlman, B. MarkEvers, P. Rychahou, H. B. Frieboes, and Y. Bae. Development of halofluorochromic polymer nanoassemblies for the potential detection of liver metastatic colorectal cancer tumors using experimental and computational approaches. Pharm. Res. 34:2385–2402, 2017.CrossRefGoogle Scholar
  41. 41.
    Siddik, Z. H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279, 2003.CrossRefGoogle Scholar
  42. 42.
    Stewart, D. J. Mechanisms of resistance to cisplatin and carboplatin. Crit. Rev. Oncol. Hematol. 63:12–31, 2007.CrossRefGoogle Scholar
  43. 43.
    van de Ven, A. L., B. Abdollahi, C. J. Martinez, L. A. Burey, M. D. Landis, J. C. Chang, M. Ferrari, and H. B. Frieboes. Modeling of nanotherapeutics delivery based on tumor perfusion. New J. Phys. 15:055004, 2013.CrossRefGoogle Scholar
  44. 44.
    van de Ven, A. L., M. Wu, J. Lowengrub, S. R. McDougall, M. A. Chaplain, V. Cristini, M. Ferrari, and H. B. Frieboes. Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors. AIP Adv. 2:11208, 2012.CrossRefGoogle Scholar
  45. 45.
    Warren, K. E. Novel therapeutic delivery approaches in development for pediatric gliomas. CNS Oncol. 2:427–435, 2013.CrossRefGoogle Scholar
  46. 46.
    Wu, M., H. B. Frieboes, M. A. J. Chaplain, S. R. McDougall, V. Cristini, and J. Lowengrub. The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems. J. Theor. Biol. 355:194–207, 2014.CrossRefGoogle Scholar
  47. 47.
    Wu, M., H. B. Frieboes, S. R. McDougall, M. A. Chaplain, V. Cristini, and J. Lowengrub. The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems. J. Theor. Biol. 320:131–151, 2013.CrossRefGoogle Scholar
  48. 48.
    Zhong, H., A. M. De Marzo, E. Laughner, M. Lim, D. A. Hilton, D. Zagzag, P. Buechler, W. B. Isaacs, G. L. Semenza, and J. W. Simons. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 59:5830–5835, 1999.Google Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleUSA
  2. 2.Department of BioengineeringUniversity of LouisvilleLouisvilleUSA
  3. 3.James Graham Brown Cancer CenterUniversity of LouisvilleLouisvilleUSA

Personalised recommendations