Annals of Biomedical Engineering

, Volume 47, Issue 1, pp 126–137 | Cite as

Design Method Using Statistical Models for Miniature Left Ventricular Assist Device Hydraulics

  • P. Alex SmithEmail author
  • Yaxin Wang
  • Shelby A. Bieritz
  • Luiz C. Sampaio
  • William E. Cohn
  • Ralph W. Metcalfe
  • O. H. Frazier


Left ventricular assist devices (LVADs) are increasingly used to treat heart failure patients. These devices’ impeller blades and diffuser vanes must be designed for hydraulic performance and hemocompatibility. The traditional design method, applying mean-line theory, is not applicable to the design of small-scale pumps such as miniature LVADs. Furthermore, iterative experimental testing to determine how each geometric variable affects hydraulic performance is time and labor intensive. In this study, we tested a design method wherein empirical hydraulic results are used to establish a statistical model to predict pump hydraulic performance. This method was used to design an intra-atrial blood pump. Five geometric variables were chosen, and each was assigned two values to define the variable space. The experimental results were then analyzed with both correlation analysis and linear regression modeling. To validate the linear regression models, 2 test pumps were designed: mean value of each geometric variable within the boundaries, and random value of each geometric variable within the boundaries. The statistical model accurately predicted the hydraulic performance of both pump designs within the boundary space. This method could be expanded to include more geometric variables and broader boundary conditions, thus accelerating the design process for miniature LVADs.


Left ventricular assist device Blood pump Hydraulic performance Statistical modeling Hydraulic torque Mechanical circulatory support Linear regression model Correlation analysis 



Intra-atrial pump


Mean-line theory


Best efficiency point

Glossary of Terms


Pressure-flow gradient (mmHg/L/min)


Hydraulic power (W)


Volumetric flow (L/min)


Pressure rise across the pump (mmHg)


Mechanical power (W)


Electrical current (A)


Rotational speed (rpm)


Torque (mNm)


Hydraulic efficiency (%)



Stephen N. Palmer, PhD, ELS, contributed to the editing of the manuscript. Juan Fernandez machined custom testing equipment. Scott A. Weldon, MA, CMI, FAMI, illustrated Fig. 1a. The Stanford and Joan Alexander Research Foundation supported this work.


  1. 1.
    Bartoli, C. R., and R. D. Dowling. The future of adult cardiac assist devices: novel systems and mechanical circulatory support strategies. Cardiol. Clin. 29:559–582, 2011.CrossRefGoogle Scholar
  2. 2.
    Benjamin, E. J., M. J. Blaha, S. E. Chiuve, M. Cushman, S. R. Das, R. Deo, S. D. de Ferranti, J. Floyd, M. Fornage, C. Gillespie, C. R. Isasi, M. C. Jiménez, L. C. Jordan, S. E. Judd, D. Lackland, J. H. Lichtman, L. Lisabeth, S. Liu, C. T. Longenecker, R. H. Mackey, K. Matsushita, D. Mozaffarian, M. E. Mussolino, K. Nasir, R. W. Neumar, L. Palaniappan, D. K. Pandey, R. R. Thiagarajan, M. J. Reeves, M. Ritchey, C. J. Rodriguez, G. A. Roth, W. D. Rosamond, C. Sasson, A. Towfighi, C. W. Tsao, M. B. Turner, S. S. Virani, J. H. Voeks, J. Z. Willey, J. T. Wilkins, J. H. Y. Wu, H. M. Alger, S. S. Wong, and P. Muntner. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 135:e146–e603, 2017.CrossRefGoogle Scholar
  3. 3.
    Box, G. E. P., J. S. Hunter, and W. G. Hunter. Statistics for Experimenters: Design, Innovation, and Discovery. New York: Wiley-Interscience, 2005.Google Scholar
  4. 4.
    Carlson, R. A Concrete Introduction to Real Analysis. Boca Raton: CRC Press, 2006.CrossRefGoogle Scholar
  5. 5.
    Dunn K. G. Process Improvement Using Data, 2018.
  6. 6.
    Giridharan, G. A., C. R. Bartoli, P. A. Spence, R. D. Dowling, and S. C. Koenig. Counterpulsation with symphony prevents retrograde carotid, aortic, and coronary flows observed with intra-aortic balloon pump support. Artif. Organs 36:600–606, 2012.CrossRefGoogle Scholar
  7. 7.
    Guyton, A. C., and J. E. Hall. Textbook of Medical Physiology. Philadelphia, PA: Elsevier Saunders, 2006.Google Scholar
  8. 8.
    Klotz, S., B. Meyns, A. Simon, T. Wittwer, P. Rahmanian, C. Schlensak, T. Tjan, H. Scheld, and D. Burkhoff. Partial mechanical long-term support with the CircuLite Synergy pump as bridge-to-transplant in congestive heart failure. Thorac. Cardiovasc. Surg. 58:S173–S178, 2010.CrossRefGoogle Scholar
  9. 9.
    Lee, S., K. Fukamachi, L. Golding, N. Moazami, and R. C. Starling. Left ventricular assist devices: from the bench to the clinic. Cardiology 125:1–12, 2013.CrossRefGoogle Scholar
  10. 10.
    Mallidi, H. R., J. Anand, and W. E. Cohn. State of the art of mechanical circulatory support. Tex. Heart Inst. J. 41:115–120, 2014.CrossRefGoogle Scholar
  11. 11.
    Mason, R. L., R. F. Gunst, and J. L. Hess. Statistical Design and Analysis of Experiments: with Applications to Engineering and Science. New York: Wiley, 2003.CrossRefGoogle Scholar
  12. 12.
    Mozaffarian, D., E. J. Benjamin, A. S. Go, D. Arnett, M. J. Blaha, and M. Cushman. Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation 133:E599–E599, 2016.Google Scholar
  13. 13.
    Pagani, F. D. Continuous-flow rotary left ventricular assist devices with “3rd generation” design. Semin. Thorac. Cardiovasc. Surg. 20:255–263, 2008.CrossRefGoogle Scholar
  14. 14.
    Shabari, F. R., J. George, M. P. Cuchiara, R. J. Langsner, J. J. Heuring, W. E. Cohn, B. A. Hertzog, and R. Delgado. Improved hemodynamics with a novel miniaturized intra-aortic axial flow pump in a porcine model of acute left ventricular dysfunction. ASAIO J. 59:240–245, 2013.CrossRefGoogle Scholar
  15. 15.
    Sieß, T., H. Reul, and G. Rau. Concept, realization, and first in vitro testing of an intraarterial microaxial blood pump. Artif. Organs 19:644–652, 1995.CrossRefGoogle Scholar
  16. 16.
    Smith, P. A., W. Cohn, and R. Metcalfe. Experimental assessment of the hydraulics of a miniature axial-flow left ventricular assist device. Soc: Bull. Am. Phys., 2017.Google Scholar
  17. 17.
    Smith, R. E., P. A. Smith, and W. E. Cohn. Predicting the dimensions of an intracardiac partial-assist pump for percutaneous delivery by analytical and numerical methods. Cardiovasc. Eng. Technol. 8:453–464, 2017.CrossRefGoogle Scholar
  18. 18.
    Smith P. A., Y. Wang, S. A. Bieritz, L. C. Sampaio, R. W. Metcalfe, W. E. Cohn, and O. H. Frazier. Hemodynamic evaluation of an intra-atrial blood pump on a pulsatile mock circulatory loop. In: Engineering in Medicine and Biology Society. Honolulu, HI, USA: IEEE, 2018 (to be published).Google Scholar
  19. 19.
    Smith, P. A., Y. Wang, S. Groß-Hardt, and R. Graefe. Hydraulic design. In: Mechanical Circulatory and Respiratory Support, edited by S. D. Gregory, M. C. Stevens, and J. F. Fraser. London: Academic Press, 2017, pp. 301–334.Google Scholar
  20. 20.
    Smith, P. A., Y. Wang, R. W. Metcalfe, L. C. Sampaio, D. L. Timms, W. E. Cohn, and O. H. Frazier. Preliminary design of the internal geometry in a minimally invasive left ventricular assist device under pulsatile-flow conditions. Int. J. Artif. Organs 41:144–151, 2018.CrossRefGoogle Scholar
  21. 21.
    Song, X., A. L. Throckmorton, A. Untaroiu, S. Patel, P. E. Allaire, H. G. Wood, and D. B. Olsen. Axial flow blood pumps. ASAIO J. 49:355–364, 2003.CrossRefGoogle Scholar
  22. 22.
    Stepanoff, A. J. Centrifugal and Axial Flow Pumps: Theory, Design, and Application. Malabar, FL: Krieger Publishing Company, 1993.Google Scholar
  23. 23.
    Stewart, J. Calculus (8th ed). Boston: Cengage Learning, 2015.Google Scholar
  24. 24.
    Timms, D. A review of clinical ventricular assist devices. Med. Eng. Phys. 33:1041–1047, 2011.CrossRefGoogle Scholar
  25. 25.
    Wang Y., P.-L. Hsu, H. C. Love, D. L. Timms, and R. A. McMahon. In vitro study of an intra-aortic VAD: Effect of reverse-rotating mode on ventricular recovery. In: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE. Milan, Italy: IEEE, 2015, pp. 274–277.Google Scholar
  26. 26.
    WHO | Cardiovascular Diseases (CVDs), 2016.
  27. 27.
    Wright, T., and P. M. Gerhart. Fluid Machinery: Performance, Analysis, and Design. Boca Raton, FL: CRC Press LLC, 2010.Google Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Cardiovascular Surgical Research LaboratoryTexas Heart InstituteHoustonUSA
  2. 2.Department of Mechanical EngineeringUniversity of HoustonHoustonUSA
  3. 3.Department of BioengineeringRice UniversityHoustonUSA
  4. 4.Center for Device Innovation, Johnson & JohnsonHoustonUSA

Personalised recommendations