Advertisement

Annals of Biomedical Engineering

, Volume 47, Issue 1, pp 174–189 | Cite as

Masquelet Technique: Effects of Spacer Material and Micro-topography on Factor Expression and Bone Regeneration

  • Zacharie Toth
  • Matt Roi
  • Emily Evans
  • J. Tracy Watson
  • Daemeon Nicolaou
  • Sarah McBride-GagyiEmail author
Article

Abstract

We and others have shown that changing surface characteristics of the spacer implanted during the first Masquelet stage alters some aspects of membrane development. Previously we demonstrated that titanium (TI) spacers create membranes that are better barriers to movement of solutes > 70 kDa in size than polymethyl methacrylate (PMMA) induced-membranes, and roughening creates more mechanically compliant membranes. However, it is unclear if these alterations affect the membrane’s biochemical environment or bone regeneration during the second stage. Ten-week-old, male Sprague–Dawley rats underwent an initial surgery to create an externally stabilized 6 mm femoral defect. PMMA or TI spacers with smooth (~ 1 μm) or roughened (~ 8 μm) surfaces were implanted. Four weeks later, rats were either euthanized for membrane harvest or underwent the second Masquelet surgery. TI spacers induced thicker membranes that were similar in structure and biochemical expression. All membranes were bilayered with the inner layer having increased factor expression [bone morphogenetic protein 2 (BMP2), transforming growth factor beta (TGFβ), interleukin 6 (IL6), and vascular endothelial growth factor (VEGF)]. Roughening increased overall IL6 levels. Ten-weeks post-engraftment, PMMA-smooth induced membranes better supported bone regeneration (60% union). The other groups only had 1 or 2 that united (9–22%). There were no significant differences in any micro computed tomography or dynamic histology outcome. In conclusion, this study suggests that the membrane’s important function in the Masquelet technique is not simply as a barrier. There is likely a critical biochemical, cellular, or vascular component as well.

Keywords

Critical-sized defects Animal model Bone reconstruction MicroCT Bone grafting 

Abbreviations

PMMA

Polymethyl methacrylate—traditional spacer material, also known as bone cement

TI

Titanium—experimental spacer material

PBS

Phosphate buffered saline—wash solution

DAPI

4′,6-Diamidino-2-phenylindole—nuclear stain

TGFβ

Transforming growth factor beta—positive regenerative protein

BMP2

Bone morphogenetic protein 2—positive regenerative protein—promotes osteogenic differentiation

VEGF

Vascular endothelial growth factor—positive regenerative protein—promotes angiogenesis

IL6

Interleukin 6—negative regenerative protein—proinflammatory factor

microCT

Micro computed tomography

BV/TV

Bone volume/total volume fraction—fraction of volume of interest filled with bone

TV

Total volume—total volume of interest

BV

Bone volume—bone within the total volume of interest

BMD

Bone mineral density—average mineral density of both bone and space within the volume of interest

TMD

Tissue mineral density—average mineral density of only bone within the volume of interest

Notes

Acknowledgments

We would like to thank Brendon King and Stephanie Podgorny for their efforts on these projects as part of the STARS Summer Program for High School Students (data collection). This work was supported by the Washington University Musculoskeletal Research Center (NIH P30 AR057235) as well as direct funding from the AO Foundation (AO Start-up Grant S-15-190M) and Saint Louis University (Presidential Research Fund).

Conflict of interest

Dr. J. Tracy Watson has intellectual property rights with and receives royalties from Smith and Nephew, Zimmer Biomet, and Advanced Orthopaedic Solutions. He has intellectual property rights with and is a Consultant for Advanced Orthopaedic Solutions. None of these are direct conflicts of interest to this research. All other authors have no conflicts to declare.

References

  1. 1.
    Ai-Aql, Z. S., A. S. Alagl, D. T. Graves, L. C. Gerstenfeld, and T. A. Einhorn. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J. Dent. Res. 87:107–118, 2008.CrossRefGoogle Scholar
  2. 2.
    Anderson, J. M., A. Rodriguez, and D. T. Chang. Foreign body reaction to biomaterials. Semin. Immunol. 20:86–100, 2008.CrossRefGoogle Scholar
  3. 3.
    Aurégan, J.-C., and T. Bégué. Induced membrane for treatment of critical sized bone defect: a review of experimental and clinical experiences. Int. Orthop. 38:1971–1978, 2014.CrossRefGoogle Scholar
  4. 4.
    Bastian, O., J. Pillay, J. Alblas, L. Leenen, L. Koenderman, and T. Blokhuis. Systemic inflammation and fracture healing. J. Leukoc. Biol. 89:669–673, 2011.CrossRefGoogle Scholar
  5. 5.
    Boskey, A. L., and R. Coleman. Aging and bone. J. Dent. Res. 89:1333–1348, 2010.CrossRefGoogle Scholar
  6. 6.
    Bragdon, B., K. Lybrand, and L. Gerstenfeld. Overview of biological mechanisms and applications of three murine models of bone repair: closed fracture with intramedullary fixation, distraction osteogenesis, and marrow ablation by reaming. Curr. Protoc. Mouse Biol. 5:21–34, 2015.CrossRefGoogle Scholar
  7. 7.
    Burchardt, H. The biology of bone graft repair. Clin. Orthop. Relat. Res. 28–42, 1983. http://www.ncbi.nlm.nih.gov/pubmed/6339139.
  8. 8.
    Chadayammuri, V., M. Hake, and C. Mauffrey. Innovative strategies for the management of long bone infection: a review of the Masquelet technique. Patient Saf. Surg. 9:32, 2015.CrossRefGoogle Scholar
  9. 9.
    Claes, L., S. Recknagel, and A. Ignatius. Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol. 8:133–143, 2012.CrossRefGoogle Scholar
  10. 10.
    Cypher, T. J., and J. P. Grossman. Biological principles of bone graft healing. J. Foot Ankle Surg. 35:413–417, 1996.CrossRefGoogle Scholar
  11. 11.
    Deskins, D. L., S. Ardestani, and P. P. Young. The polyvinyl alcohol sponge model implantation. J. Vis. Exp. 2012.  https://doi.org/10.3791/3885.Google Scholar
  12. 12.
    Dimitriou, R., G. I. Mataliotakis, G. Calori, and P. V. Giannoudis. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med. 10:81, 2012.CrossRefGoogle Scholar
  13. 13.
    Flurkey, K., J. M. Currer, and D. E. Harrison. Chapter 20—mouse models in aging research. In: The Mouse in Biomedical Research, edited by J. G. Fox, M. T. Davisson, F. W. Quimby, S. W. Barthold, C. E. Newcomer, and A. L. Smith. Burlington, MA: Academic, 2007, pp. 637–672.  https://doi.org/10.1016/b978-012369454-6/50074-1.
  14. 14.
    Gaio, N., A. Martino, Z. Toth, J. T. Watson, D. Nicolaou, and S. McBride-Gagyi. Masquelet technique: the effect of altering implant material and topography on membrane matrix composition, mechanical and barrier properties in a rat defect model. J. Biomech. 72:53–62, 2018.CrossRefGoogle Scholar
  15. 15.
    Geetha, M., A. K. Singh, R. Asokamani, and A. K. Gogia. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog. Mater. Sci. 54:397–425, 2009.CrossRefGoogle Scholar
  16. 16.
    Gerstenfeld, L. C., D. M. Cullinane, G. L. Barnes, D. T. Graves, and T. A. Einhorn. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J. Cell. Biochem. 88:873–884, 2003.CrossRefGoogle Scholar
  17. 17.
    Giannoudis, P. V., O. Faour, T. Goff, N. Kanakaris, and R. Dimitriou. Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury 42:591–598, 2011.CrossRefGoogle Scholar
  18. 18.
    Gibon, E., L. Lu, and S. B. Goodman. Aging, inflammation, stem cells, and bone healing. Stem Cell Res. Ther. 7:44, 2016.CrossRefGoogle Scholar
  19. 19.
    Goriainov, V., R. Cook, J. M. Latham, D. G. Dunlop, and R. O. C. Oreffo. Bone and metal: an orthopaedic perspective on osseointegration of metals. Acta Biomater. 10:4043–4057, 2014.CrossRefGoogle Scholar
  20. 20.
    Gouron, R., L. Petit, C. Boudot, I. Six, M. Brazier, S. Kamel, and R. Mentaverri. Osteoclasts and their precursors are present in the induced-membrane during bone reconstruction using the Masquelet technique. J. Tissue Eng. Regen. Med. 11:382–389, 2014.CrossRefGoogle Scholar
  21. 21.
    Gruber, H. E., F. K. Gettys, H. E. Montijo, J. S. Starman, E. Bayoumi, K. J. Nelson, G. L. Hoelscher, W. K. Ramp, N. Zinchenko, J. A. Ingram, M. J. Bosse, and J. F. Kellam. Genomewide molecular and biologic characterization of biomembrane formation adjacent to a methacrylate spacer in the rat femoral segmental defect model. J. Orthop. Trauma 27:290–297, 2013.CrossRefGoogle Scholar
  22. 22.
    Gruber, H. E., G. Ode, G. Hoelscher, J. Ingram, S. Bethea, and M. J. Bosse. Osteogenic, stem cell and molecular characterisation of the human induced membrane from extremity bone defects. Bone Jt Res. 5:106–115, 2016.CrossRefGoogle Scholar
  23. 23.
    Hadjiargyrou, M., and R. J. O’Keefe. The convergence of fracture repair and stem cells: interplay of genes, aging, environmental factors and disease. J. Bone Miner. Res. 29:2307–2322, 2014.CrossRefGoogle Scholar
  24. 24.
    Hotchen, A. J., L. V. Barr, and M. Krkovic. Bridging hard callus at 48 days in an open femoral shaft fracture with segmental defect treated with a first-stage Masquelet technique: I wasn’t expecting that. Strateg. Trauma Limb Reconstr. 13:57–60, 2018.CrossRefGoogle Scholar
  25. 25.
    Karger, C., T. Kishi, L. Schneider, F. Fitoussi, and A.-C. Masquelet. Treatment of posttraumatic bone defects by the induced membrane technique. Orthop. Traumatol. Surg. Res. 98:97–102, 2012.CrossRefGoogle Scholar
  26. 26.
    Kelly, D. J., and C. R. Jacobs. The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res. C 90:75–85, 2010.CrossRefGoogle Scholar
  27. 27.
    Kenneth Ward, W. A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J. Diabetes Sci. Technol. 2:768–777, 2008.CrossRefGoogle Scholar
  28. 28.
    Khan, S. N., F. P. Cammisa, H. S. Sandhu, A. D. Diwan, F. P. Girardi, and J. M. Lane. The biology of bone grafting. J. Am. Acad. Orthop. Surg. 13:77–86, 2005.CrossRefGoogle Scholar
  29. 29.
    Klaue, K., U. Knothe, C. Anton, D. H. Pfluger, M. Stoddart, A. C. Masquelet, and S. M. Perren. Bone regeneration in long-bone defects: tissue compartmentalisation? In vivo study on bone defects in sheep. Injury 40(Suppl 4):S95–S102, 2009.CrossRefGoogle Scholar
  30. 30.
    Klein-Nulend, J., R. G. Bacabac, and M. G. Mullender. Mechanobiology of bone tissue. Pathol. Biol. (Paris) 53:576–580, 2005.CrossRefGoogle Scholar
  31. 31.
    Kon, T., T.-J. Cho, T. Aizawa, M. Yamazaki, N. Nooh, D. Graves, L. C. Gerstenfeld, and T. A. Einhorn. Expression of osteoprotegerin, receptor activator of NF-κB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J. Bone Miner. Res. 16:1004–1014, 2001.CrossRefGoogle Scholar
  32. 32.
    Liu, H., G. Hu, P. Shang, Y. Shen, P. Nie, L. Peng, and H. Xu. Histological characteristics of induced membranes in subcutaneous, intramuscular sites and bone defect. Orthop. Traumatol. Surg. Res. 99:959–964, 2013.CrossRefGoogle Scholar
  33. 33.
    Loi, F., L. A. Córdova, J. Pajarinen, T. Lin, Z. Yao, and S. B. Goodman. Inflammation, fracture and bone repair. Bone 86:119–130, 2016.CrossRefGoogle Scholar
  34. 34.
    Luangphakdy, V., G. Elizabeth Pluhar, N. S. Piuzzi, J.-C. D’Alleyrand, C. S. Carlson, J. E. Bechtold, J. Forsberg, and G. F. Muschler. The effect of surgical technique and spacer texture on bone regeneration: a caprine study using the Masquelet technique. Clin. Orthop. Relat. Res. 475:2575–2585, 2017.CrossRefGoogle Scholar
  35. 35.
    Macaulay, W., C. W. DiGiovanni, A. Restrepo, K. J. Saleh, H. Walsh, L. S. Crossett, M. G. E. Peterson, S. Li, and E. A. Salvati. Differences in bone-cement porosity by vacuum mixing, centrifugation, and hand mixing. J. Arthroplast. 17:569–575, 2002.CrossRefGoogle Scholar
  36. 36.
    Masquelet, A. C., and T. Begue. The concept of induced membrane for reconstruction of long bone defects. Orthop. Clin. N. Am. 41:27–37; table of contents, 2010.Google Scholar
  37. 37.
    Mauffrey, C., B. T. Barlow, and W. Smith. Management of segmental bone defects. J. Am. Acad. Orthop. Surg. 23:143–153, 2015.Google Scholar
  38. 38.
    McBride-Gagyi, S. H., J. A. McKenzie, E. G. Buettmann, M. J. Gardner, and M. J. Silva. Bmp2 conditional knockout in osteoblasts and endothelial cells does not impair bone formation after injury or mechanical loading in adult mice. Bone 81:533–543, 2015.CrossRefGoogle Scholar
  39. 39.
    McBride-Gagyi, S., Z. Toth, D. Kim, V. Ip, E. Evans, J. T. Watson, and D. Nicolaou. Altering spacer material affects bone regeneration in the Masquelet technique in a rat femoral defect. J. Orthop. Res. 2018.  https://doi.org/10.1002/jor.23866.Google Scholar
  40. 40.
    Morelli, I., L. Drago, D. A. George, E. Gallazzi, S. Scarponi, and C. L. Romanò. Masquelet technique: myth or reality? A systematic review and meta-analysis. Injury 47:S68–S76, 2016.CrossRefGoogle Scholar
  41. 41.
    Morelli, I., L. Drago, D. A. George, D. Romanò, and C. L. Romanò. Managing large bone defects in children. J. Pediatr. Orthop. B 2017.  https://doi.org/10.1097/bpb.0000000000000456.Google Scholar
  42. 42.
    Morgan, E. F., R. E. Gleason, L. N. M. Hayward, P. L. Leong, and K. T. S. Palomares. Mechanotransduction and fracture repair. J. Bone Jt Surg. Am. 90(Suppl 1):25–30, 2008.CrossRefGoogle Scholar
  43. 43.
    Nau, C., C. Seebach, A. Trumm, A. Schaible, K. Kontradowitz, S. Meier, H. Buechner, I. Marzi, and D. Henrich. Alteration of Masquelet’s induced membrane characteristics by different kinds of antibiotic enriched bone cement in a critical size defect model in the rat’s femur. Injury 47:325–334, 2016.CrossRefGoogle Scholar
  44. 44.
    Nuss, K. M. R., and B. von Rechenberg. Biocompatibility issues with modern implants in bone—a review for clinical orthopedics. Open Orthop. J. 2:66–78, 2008.CrossRefGoogle Scholar
  45. 45.
    Prystaz, K., K. Kaiser, A. Kovtun, M. Haffner-Luntzer, V. Fischer, A. E. Rapp, A. Liedert, G. Strauss, G. H. Waetzig, S. Rose-John, and A. Ignatius. Distinct effects of IL-6 classic and trans-signaling in bone fracture healing. Am. J. Pathol. 188:474–490, 2018.CrossRefGoogle Scholar
  46. 46.
    Richards, R. G. Implant surfaces: do they have any relevance to the surgeon? AO Dialogue 07:20–24, 2007.Google Scholar
  47. 47.
    Roddy, E., M. R. Debaun, A. Daoud-gray, Y. P. Yang, and M. J. Gardner. Treatment of critical-sized bone defects: clinical and tissue engineering perspectives. Eur. J. Orthop. Surg. Traumatol. 2017.  https://doi.org/10.1007/s00590-017-2063-0.Google Scholar
  48. 48.
    Rolfe, B., J. Mooney, B. Zhang, S. Jahnke, S.-J. Le, Y.-Q. Chau, Q. Huang, H. Wang, G. Campbell, and J. Campbell. The fibrotic response to implanted biomaterials: implications for tissue engineering. In: Regenerative Medicine and Tissue Engineering—Cells and Biomaterials. InTech, 2011, pp. 551–568.  https://doi.org/10.5772/21790.
  49. 49.
    Shah, S. R., B. T. Smith, A. M. Tatara, E. R. Molina, E. J. Lee, T. C. Piepergerdes, B. A. Uhrig, R. E. Guldberg, G. N. Bennett, J. C. Wenke, and A. G. Mikos. Effects of local antibiotic delivery from porous space maintainers on infection clearance and induction of an osteogenic membrane in an infected bone defect. Tissue Eng. A 23:91–100, 2017.CrossRefGoogle Scholar
  50. 50.
    Sharkawy, A. A., B. Klitzman, G. A. Truskey, and W. M. Reichert. Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties. J. Biomed. Mater. Res. 37:401–412, 1997.CrossRefGoogle Scholar
  51. 51.
    Taylor, B. C., B. G. French, T. T. Fowler, J. Russell, and A. Poka. Induced membrane technique for reconstruction to manage bone loss. J. Am. Acad. Orthop. Surg. 20:142–150, 2012.CrossRefGoogle Scholar
  52. 52.
    Taylor, B. C., J. Hancock, R. Zitzke, and J. Castaneda. Treatment of bone loss with the induced membrane technique: techniques and outcomes. J. Orthop. Trauma 29:554–557, 2015.CrossRefGoogle Scholar
  53. 53.
    Wang, J.-S., H. Franzen, E. Jonsson, and L. Lidgren. Porosity of bone cement reduced by mixing and collecting under vacuum. Acta Orthop. Scand. 64:143–146, 1993.CrossRefGoogle Scholar
  54. 54.
    Ward, W. K., E. P. Slobodzian, K. L. Tiekotter, and M. D. Wood. The effect of microgeometry, implant thickness and polyurethane chemistry on the foreign body response to subcutaneous implants. Biomaterials 23:4185–4192, 2002.CrossRefGoogle Scholar
  55. 55.
    Wehner, T., K. Gruchenberg, R. Bindl, S. Recknagel, M. Steiner, A. Ignatius, and L. Claes. Temporal delimitation of the healing phases via monitoring of fracture callus stiffness in rats. J. Orthop. Res. 32:1589–1595, 2014.CrossRefGoogle Scholar
  56. 56.
    Wixson, R. L., E. P. Lautenschlager, and M. A. Novak. Vacuum mixing of acrylic bone cement. J. Arthroplast. 2:141–149, 1987.CrossRefGoogle Scholar
  57. 57.
    Yang, X., B. F. Ricciardi, A. Hernandez-Soria, Y. Shi, N. Pleshko Camacho, and M. P. G. Bostrom. Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone 41:928–936, 2007.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgerySaint Louis University School of MedicineSt. LouisUSA

Personalised recommendations