Transcriptomic Characterization of a Human In Vitro Model of Arrhythmogenic Cardiomyopathy Under Topological and Mechanical Stimuli

  • Sebastian Martewicz
  • Camilla Luni
  • Elena Serena
  • Piero Pavan
  • Huei-Sheng Vincent Chen
  • Alessandra Rampazzo
  • Nicola Elvassore


Cell junctions play an important role in coordinating intercellular communication and intracellular ultrastructures, with desmosomes representing the mechanical component of such intercellular connections. Mutations to desmosomal component proteins compromise both inter- and intracellular signalling and correlate with severe diseases like arrhythmogenic cardiomyopathy (AC), with pathological phenotypes in tissues subjected to intense mechanical stimuli (skin and heart). Here, we explore the consequences of dysfunctional desmosomes in one line of induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) derived from an AC patient with a homozygous pathogenic mutation in desmosomal component protein plakophilin-2 (PKP2). We specifically aim at investigating the response to mechanical stress in an AC-pathological setting. To this aim, we aligned hiPS-CMs on stretchable patterned substrates to mimic the cardiac functional syncytium and compared transcriptomic profiles of PKP2-mutated hiPS-CMs and healthy controls. AC-CMs display altered transcription towards a pro-fibrotic gene expression program, and concurrent dysregulation of gene sets closely associated with cell-to-cell connections. By integrating the culture substrate with a macroscopic stretching setup able to accurately apply cyclic uniaxial elongation, we show how response to mechanical loads in AC-CMs deviates from the canonical mechanical-stress response observed in healthy-CMs.


Aligned cardiomyocytes Stretch Arrhythmogenic cardiomyopathy Human pluripotent stem cell PKP2 hiPS-derived cardiomyocytes 



This work was supported by ShanghaiTech University to S.M., C.L., N.E. [Grant F-0301-15-009]; University of Padova [TRANSAC Progetto Strategico to A.R., N.E.]; Oak Foundation Award to N.E. Grant #W1095/OCAY-14-191; Regione del Veneto [Ricerca sanitaria finalizzata to N.E.]; National Institute of Health grant [RO1 HL105194 to H.-S.V.C.); and start-up funds from Krannert Institute of Cardiology and School of Medicine, Indiana University (to H.-S.V.C.). We thank SIAIS Informatic platform at ShanghaiTech University for high-performance computational facilities. We thank Dr. Alessandro Zambon from University of Padova for his assistance in lithography and microfabrication.

Conflict of interest

None declared.

Supplementary material

10439_2018_2134_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1254 kb)
10439_2018_2134_MOESM2_ESM.xlsx (4.8 mb)
Supplementary material 2 (XLSX 4904 kb)
10439_2018_2134_MOESM3_ESM.xlsx (127 kb)
Supplementary material 3 (XLSX 127 kb)
10439_2018_2134_MOESM4_ESM.avi (3.8 mb)
Supplementary MovieS1 (AVI 3919 kb)
10439_2018_2134_MOESM5_ESM.avi (3 mb)
Supplementary MovieS2 (AVI 3089 kb)
10439_2018_2134_MOESM6_ESM.avi (1.5 mb)
Supplementary MovieS3 (AVI 1513 kb)
10439_2018_2134_MOESM7_ESM.avi (2 mb)
Supplementary MovieS4 (AVI 2057 kb)
10439_2018_2134_MOESM8_ESM.avi (1.4 mb)
Supplementary MovieS5 (AVI 1479 kb)


  1. 1.
    Akdis, D., A. M. Saguner, K. Shah, C. Wei, A. Medeiros-Domingo, A. von Eckardstein, T. F. Luscher, C. Brunckhorst, H. S. V. Chen, and F. Duru. Sex hormones affect outcome in arrhythmogenic right ventricular cardiomyopathy/dysplasia: from a stem cell derived cardiomyocyte-based model to clinical biomarkers of disease outcome. Eur. Heart J. 38:1498–1508, 2017.CrossRefPubMedGoogle Scholar
  2. 2.
    Asimaki, A., and J. E. Saffitz. Remodeling of cell-cell junctions in arrhythmogenic cardiomyopathy. Cell Commun. Adhes. 21:13–23, 2014.CrossRefPubMedGoogle Scholar
  3. 3.
    Bezzina, C. R., J. Barc, Y. Mizusawa, C. A. Remme, J.-B. Gourraud, F. Simonet, A. O. Verkerk, P. J. Schwartz, L. Crotti, F. Dagradi, P. Guicheney, V. Fressart, A. Leenhardt, C. Antzelevitch, S. Bartkowiak, E. Schulze-Bahr, S. Zumhagen, E. R. Behr, R. Bastiaenen, J. Tfelt-Hansen, M. S. Olesen, S. Kääb, B. M. Beckmann, P. Weeke, H. Watanabe, N. Endo, T. Minamino, M. Horie, S. Ohno, K. Hasegawa, N. Makita, A. Nogami, W. Shimizu, T. Aiba, P. Froguel, B. Balkau, O. Lantieri, M. Torchio, C. Wiese, D. Weber, R. Wolswinkel, R. Coronel, B. J. Boukens, S. Bézieau, E. Charpentier, S. Chatel, A. Despres, F. Gros, F. Kyndt, S. Lecointe, P. Lindenbaum, V. Portero, J. Violleau, M. Gessler, H. L. Tan, D. M. Roden, V. M. Christoffels, H. Le Marec, A. A. Wilde, V. Probst, J.-J. Schott, C. Dina, and R. Redon. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat. Genet. 45:1044–1049, 2013.CrossRefPubMedGoogle Scholar
  4. 4.
    Bray, M. A., S. P. Sheehy, and K. K. Parker. Sarcomere alignment is regulated by myocyte shape. Cell Motil. Cytoskelet. 65:641–651, 2008.CrossRefGoogle Scholar
  5. 5.
    Brodehl, A., D. D. Belke, L. Garnett, K. Martens, N. Abdelfatah, M. Rodriguez, C. Diao, Y. X. Chen, P. M. Gordon, A. Nygren, and B. Gerull. Transgenic mice overexpressing desmocollin-2 (DSC2) develop cardiomyopathy associated with myocardial inflammation and fibrotic remodeling. PLoS ONE 12:e0174019, 2017.CrossRefPubMedGoogle Scholar
  6. 6.
    Caspi, O., I. Huber, A. Gepstein, G. Arbel, L. Maizels, M. Boulos, and L. Gepstein. Modeling of arrhythmogenic right ventricular cardiomyopathy with human induced pluripotent stem cells. Circ. Cardiovasc. Genet. 6:557–568, 2013.CrossRefPubMedGoogle Scholar
  7. 7.
    Cerrone, M., X. Lin, M. Zhang, E. Agullo-Pascual, A. Pfenniger, H. Chkourko Gusky, V. Novelli, C. Kim, T. Tirasawadichai, D. P. Judge, E. Rothenberg, H. S. Chen, C. Napolitano, S. G. Priori, and M. Delmar. Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype. Circulation 129:1092–1103, 2014.CrossRefPubMedGoogle Scholar
  8. 8.
    Coonar, A. S., N. Protonotarios, A. Tsatsopoulou, E. W. Needham, R. S. Houlston, S. Cliff, M. I. Otter, V. A. Murday, R. K. Mattu, and W. J. McKenna. Gene for arrhythmogenic right ventricular cardiomyopathy with diffuse nonepidermolytic palmoplantar keratoderma and woolly hair (Naxos disease) maps to 17q21. Circulation 97:2049–2058, 1998.CrossRefPubMedGoogle Scholar
  9. 9.
    Corrado, D., C. Basso, and D. P. Judge. Arrhythmogenic cardiomyopathy. Circ. Res. 121:784, 2017.CrossRefPubMedGoogle Scholar
  10. 10.
    Dabiri, B. E., H. Lee, and K. K. Parker. A potential role for integrin signaling in mechanoelectrical feedback. Prog. Biophys. Mol. Biol. 110:196–203, 2012.CrossRefPubMedGoogle Scholar
  11. 11.
    De Jong, A. M., A. H. Maass, S. U. Oberdorf-Maass, R. A. De Boer, W. H. Van Gilst, and I. C. Van Gelder. Cyclical stretch induces structural changes in atrial myocytes. J. Cell Mol. Med. 17:743–753, 2013.CrossRefPubMedGoogle Scholar
  12. 12.
    Delmar, M., and W. J. McKenna. The cardiac desmosome and arrhythmogenic cardiomyopathies: from gene to disease. Circ. Res. 107:700–714, 2010.CrossRefPubMedGoogle Scholar
  13. 13.
    Dobaczewski, M., J. J. de Haan, and N. G. Frangogiannis. The extracellular matrix modulates fibroblast phenotype and function in the infarcted myocardium. J. Cardiovasc. Transl. Res. 5:837–847, 2012.CrossRefPubMedGoogle Scholar
  14. 14.
    Dubash, A. D., C. Y. Kam, B. A. Aguado, D. M. Patel, M. Delmar, L. D. Shea, and K. J. Green. Plakophilin-2 loss promotes TGF-beta1/p38 MAPK-dependent fibrotic gene expression in cardiomyocytes. J. Cell Biol. 212:425–438, 2016.CrossRefPubMedGoogle Scholar
  15. 15.
    Figallo, E., C. Cannizzaro, S. Gerecht, J. A. Burdick, R. Langer, N. Elvassore, and G. Vunjak-Novakovic. Micro-bioreactor array for controlling cellular microenvironments. Lab Chip 7:710–719, 2007.CrossRefPubMedGoogle Scholar
  16. 16.
    Friedrich, O., D. Schneidereit, Y. A. Nikolaev, V. Nikolova-Krstevski, S. Schurmann, A. Wirth-Hucking, A. L. Merten, D. Fatkin, and B. Martinac. Adding dimension to cellular mechanotransduction: advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling. Prog. Biophys. Mol. Biol. 130:170–191, 2017.CrossRefPubMedGoogle Scholar
  17. 17.
    Garcia-Gras, E., R. Lombardi, M. J. Giocondo, J. T. Willerson, M. D. Schneider, D. S. Khoury, and A. J. Marian. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J. Clin. Invest. 116:2012–2021, 2006.CrossRefPubMedGoogle Scholar
  18. 18.
    Giobbe, G. G., F. Michielin, C. Luni, S. Giulitti, S. Martewicz, S. Dupont, A. Floreani, and N. Elvassore. Functional differentiation of human pluripotent stem cells on a chip. Nat. Methods 12:637, 2015.CrossRefPubMedGoogle Scholar
  19. 19.
    Gopalan, S. M., C. Flaim, S. N. Bhatia, M. Hoshijima, R. Knoell, K. R. Chien, J. H. Omens, and A. D. McCulloch. Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Biotechnol. Bioeng. 81:578–587, 2003.CrossRefPubMedGoogle Scholar
  20. 20.
    Hall, C., S. Li, H. Li, V. Creason, and J. K. Wahl, 3rd. Arrhythmogenic right ventricular cardiomyopathy plakophilin-2 mutations disrupt desmosome assembly and stability. Cell Commun. Adhes. 16:15–27, 2009.CrossRefPubMedGoogle Scholar
  21. 21.
    Herum, K. M., I. G. Lunde, B. Skrbic, G. Florholmen, D. Behmen, I. Sjaastad, C. R. Carlson, M. F. Gomez, and G. Christensen. Syndecan-4 signaling via NFAT regulates extracellular matrix production and cardiac myofibroblast differentiation in response to mechanical stress. J. Mol. Cell. Cardiol. 54:73–81, 2013.CrossRefPubMedGoogle Scholar
  22. 22.
    Hsu, H. J., C. F. Lee, A. Locke, S. Q. Vanderzyl, and R. Kaunas. Stretch-induced stress fiber remodeling and the activations of JNK and ERK depend on mechanical strain rate, but not FAK. PLoS ONE 5:e12470, 2010.CrossRefPubMedGoogle Scholar
  23. 23.
    Huang, K., Z. Q. Yan, D. Zhao, S. G. Chen, L. Z. Gao, P. Zhang, B. R. Shen, H. C. Han, Y. X. Qi, and Z. L. Jiang. SIRT1 and FOXO mediate contractile differentiation of vascular smooth muscle cells under cyclic stretch. Cell. Physiol. Biochem. 37:1817–1829, 2015.CrossRefPubMedGoogle Scholar
  24. 24.
    Janson, I. A., and A. J. Putnam. Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms. J. Biomed. Mater. Res. A 103:1246–1258, 2015.CrossRefPubMedGoogle Scholar
  25. 25.
    Kada, K., K. Yasui, K. Naruse, K. Kamiya, I. Kodama, and J. Toyama. Orientation change of cardiocytes induced by cyclic stretch stimulation: time dependency and involvement of protein kinases. J. Mol. Cell. Cardiol. 31:247–259, 1999.CrossRefPubMedGoogle Scholar
  26. 26.
    Kamble, H., M. J. Barton, M. Jun, S. Park, and N. T. Nguyen. Cell stretching devices as research tools: engineering and biological considerations. Lab Chip 16:3193–3203, 2016.CrossRefPubMedGoogle Scholar
  27. 27.
    Karsdal, M. A., S. H. Nielsen, D. J. Leeming, L. L. Langholm, M. J. Nielsen, T. Manon-Jensen, A. Siebuhr, N. S. Gudmann, S. Ronnow, J. M. Sand, S. J. Daniels, J. H. Mortensen, and D. Schuppan. The good and the bad collagens of fibrosis—their role in signaling and organ function. Adv. Drug Deliv. Rev. 121:43–56, 2017.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim, C., J. Wong, J. Wen, S. Wang, C. Wang, S. Spiering, N. G. Kan, S. Forcales, P. L. Puri, T. C. Leone, J. E. Marine, H. Calkins, D. P. Kelly, D. P. Judge, and H. S. Chen. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature 494:105–110, 2013.CrossRefPubMedGoogle Scholar
  29. 29.
    Lian, X., C. Hsiao, G. Wilson, K. Zhu, L. B. Hazeltine, S. M. Azarin, K. K. Raval, J. Zhang, T. J. Kamp, and S. P. Palecek. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl. Acad. Sci. USA 109:E1848–1857, 2012.CrossRefPubMedGoogle Scholar
  30. 30.
    Liberzon, A., A. Subramanian, R. Pinchback, H. Thorvaldsdottir, P. Tamayo, and J. P. Mesirov. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27:1739–1740, 2011.CrossRefPubMedGoogle Scholar
  31. 31.
    Livne, A., E. Bouchbinder, and B. Geiger. Cell reorientation under cyclic stretching. Nat. Commun. 5:3938, 2014.CrossRefPubMedGoogle Scholar
  32. 32.
    Loesberg, W. A., X. F. Walboomers, J. J. van Loon, and J. A. Jansen. The effect of combined cyclic mechanical stretching and microgrooved surface topography on the behavior of fibroblasts. J. Biomed. Mater. Res. A 75:723–732, 2005.CrossRefPubMedGoogle Scholar
  33. 33.
    Lombardi, R., S. N. Chen, A. Ruggiero, P. Gurha, G. Z. Czernuszewicz, J. T. Willerson, and A. J. Marian. Cardiac fibro-adipocyte progenitors express desmosome proteins and preferentially differentiate to adipocytes upon deletion of the desmoplakin gene. Circ. Res. 119:41–54, 2016.CrossRefPubMedGoogle Scholar
  34. 34.
    Lombardi, R., M. da Graca Cabreira-Hansen, A. Bell, R. R. Fromm, J. T. Willerson, and A. J. Marian. Nuclear plakoglobin is essential for differentiation of cardiac progenitor cells to adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ. Res. 109:1342–1353, 2011.CrossRefPubMedGoogle Scholar
  35. 35.
    Lombardi, R., J. Dong, G. Rodriguez, A. Bell, T. K. Leung, R. J. Schwartz, J. T. Willerson, R. Brugada, and A. J. Marian. Genetic fate mapping identifies second heart field progenitor cells as a source of adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ. Res. 104:1076–1084, 2009.CrossRefPubMedGoogle Scholar
  36. 36.
    Lorenzon, A., M. Calore, G. Poloni, L. J. De Windt, P. Braghetta, and A. Rampazzo. Wnt/beta-catenin pathway in arrhythmogenic cardiomyopathy. Oncotarget 8:60640–60655, 2017.CrossRefPubMedGoogle Scholar
  37. 37.
    Ma, D., H. Wei, J. Lu, S. Ho, G. Zhang, X. Sun, Y. Oh, S. H. Tan, M. L. Ng, W. Shim, P. Wong, and R. Liew. Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 34:1122–1133, 2013.CrossRefPubMedGoogle Scholar
  38. 38.
    Mammoto, A., T. Mammoto, and D. E. Ingber. Mechanosensitive mechanisms in transcriptional regulation. J. Cell Sci. 125:3061–3073, 2012.CrossRefPubMedGoogle Scholar
  39. 39.
    Natarajan, A., M. Stancescu, V. Dhir, C. Armstrong, F. Sommerhage, J. J. Hickman, and P. Molnar. Patterned cardiomyocytes on microelectrode arrays as a functional, high information content drug screening platform. Biomaterials 32:4267–4274, 2011.CrossRefPubMedGoogle Scholar
  40. 40.
    Oyunbaatar, N. E., D. H. Lee, S. J. Patil, E. S. Kim, and D. W. Lee. Biomechanical characterization of cardiomyocyte using PDMS pillar with microgrooves. Sensors (Basel) 2016. Scholar
  41. 41.
    Pardo, P. S., M. A. Lopez, and A. M. Boriek. FOXO transcription factors are mechanosensitive and their regulation is altered with aging in the respiratory pump. Am. J. Physiol. Cell Physiol. 294:C1056, 2008.CrossRefPubMedGoogle Scholar
  42. 42.
    Paylor, B., J. Fernandes, B. McManus, and F. Rossi. Tissue-resident Sca1 + PDGFRalpha + mesenchymal progenitors are the cellular source of fibrofatty infiltration in arrhythmogenic cardiomyopathy. F1000Research 2:141, 2013.CrossRefPubMedGoogle Scholar
  43. 43.
    Poloni, G., M. De Bortoli, M. Calore, A. Rampazzo, and A. Lorenzon. Arrhythmogenic right-ventricular cardiomyopathy: molecular genetics into clinical practice in the era of next generation sequencing. J. Cardiovasc. Med. (Hagerstown) 17:399–407, 2016.CrossRefGoogle Scholar
  44. 44.
    Rampazzo, A., M. Calore, J. van Hengel, and F. van Roy. Intercalated discs and arrhythmogenic cardiomyopathy. Circ. Cardiovasc. Genet. 7:930–940, 2014.CrossRefPubMedGoogle Scholar
  45. 45.
    Robertson, C., D. D. Tran, and S. C. George. Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31:829–837, 2013.CrossRefPubMedGoogle Scholar
  46. 46.
    Roost, M. S., L. van Iperen, Y. Ariyurek, H. P. Buermans, W. Arindrarto, H. D. Devalla, R. Passier, C. L. Mummery, F. Carlotti, E. J. de Koning, E. W. van Zwet, J. J. Goeman, and S. M. C. de Sousa Lopes. KeyGenes, a tool to probe tissue differentiation using a human fetal transcriptional atlas. Stem Cell Rep. 4:1112–1124, 2015.CrossRefGoogle Scholar
  47. 47.
    Rysa, J., H. Tokola, and H. Ruskoaho. Mechanical stretch induced transcriptomic profiles in cardiac myocytes. Sci. Rep. 8:4733, 2018.CrossRefPubMedGoogle Scholar
  48. 48.
    Sato, P. Y., W. Coombs, X. Lin, O. Nekrasova, K. J. Green, L. L. Isom, S. M. Taffet, and M. Delmar. Interactions between ankyrin-G, plakophilin-2, and connexin43 at the cardiac intercalated disc. Circ. Res. 109:193–201, 2011.CrossRefPubMedGoogle Scholar
  49. 49.
    Saygili, E., O. R. Rana, C. Meyer, C. Gemein, M. G. Andrzejewski, A. Ludwig, C. Weber, U. Schotten, A. Krüttgen, J. Weis, R. H. G. Schwinger, K. Mischke, T. Rassaf, M. Kelm, and P. Schauerte. The angiotensin–calcineurin–NFAT pathway mediates stretch-induced up-regulation of matrix metalloproteinases-2/-9 in atrial myocytes. Basic Res. Cardiol. 104:435–448, 2009.CrossRefPubMedGoogle Scholar
  50. 50.
    Sommariva, E., S. Brambilla, C. Carbucicchio, E. Gambini, V. Meraviglia, A. Dello Russo, F. M. Farina, M. Casella, V. Catto, G. Pontone, M. Chiesa, I. Stadiotti, E. Cogliati, A. Paolin, N. Ouali Alami, C. Preziuso, G. d’Amati, G. I. Colombo, A. Rossini, M. C. Capogrossi, C. Tondo, and G. Pompilio. Cardiac mesenchymal stromal cells are a source of adipocytes in arrhythmogenic cardiomyopathy. Eur. Heart J. 37:1835–1846, 2016.CrossRefPubMedGoogle Scholar
  51. 51.
    Tamiello, C., A. B. C. Buskermolen, F. P. T. Baaijens, J. L. V. Broers, and C. V. C. Bouten. Heading in the right direction: understanding cellular orientation responses to complex biophysical environments. Cell. Mol. Bioeng. 9:12–37, 2016.CrossRefPubMedGoogle Scholar
  52. 52.
    Te Riele, A. S., E. Agullo-Pascual, C. A. James, A. Leo-Macias, M. Cerrone, M. Zhang, X. Lin, B. Lin, N. L. Sobreira, N. Amat-Alarcon, R. F. Marsman, B. Murray, C. Tichnell, J. F. van der Heijden, D. Dooijes, T. A. van Veen, H. Tandri, S. J. Fowler, R. N. Hauer, G. Tomaselli, M. P. van den Berg, M. R. Taylor, F. Brun, G. Sinagra, A. A. Wilde, L. Mestroni, C. R. Bezzina, H. Calkins, J. P. van Tintelen, L. Bu, M. Delmar, and D. P. Judge. Multilevel analyses of SCN5A mutations in arrhythmogenic right ventricular dysplasia/cardiomyopathy suggest non-canonical mechanisms for disease pathogenesis. Cardiovasc. Res. 113:102–111, 2017.CrossRefPubMedGoogle Scholar
  53. 53.
    Yang, Y. C., X. D. Wang, K. Huang, L. Wang, Z. L. Jiang, and Y. X. Qi. Temporal phosphoproteomics to investigate the mechanotransduction of vascular smooth muscle cells in response to cyclic stretch. J. Biomech. 47:3622–3629, 2014.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghaiChina
  2. 2.Department of Industrial EngineeringUniversity of PadovaPaduaItaly
  3. 3.Venetian Institute of Molecular MedicinePaduaItaly
  4. 4.Centre for Mechanics of Biological MaterialsUniversity of PadovaPaduaItaly
  5. 5.Krannert Institute of CardiologyIndiana UniversityIndianapolisUSA
  6. 6.Department of BiologyUniversity of PadovaPaduaItaly
  7. 7.Stem Cells & Regenerative Medicine SectionUCL Great Ormond Street Institute of Child HealthLondonUK

Personalised recommendations