Advertisement

Annals of Biomedical Engineering

, Volume 47, Issue 1, pp 317–331 | Cite as

Validity of Skin, Oral and Tympanic Temperatures During Exercise in the Heat: Effects of Wind and Sweat

  • Ricardo Morán-Navarro
  • Javier Courel-Ibáñez
  • Alejandro Martínez-Cava
  • Elena Conesa-Ros
  • Alejandro Sánchez-Pay
  • Ricardo Mora-Rodriguez
  • Jesús G. PallarésEmail author
Article

Abstract

This experiment investigates the validity of six thermometers with different measuring sensors, operation and site of application, to estimate core temperature (Tc) in comparison to an ingestible thermometric sensor based on quartz crystal technology. Measurements were obtained before, during and after exercise in the heat, controlling the presence of air-cooling and skin sweating. Twelve well-trained men swallowed the ingestible thermometer 6 h before the trial. After pre-exercise resting measurements at 20 °C, subjects entered a heat chamber held at 40 °C. Exercise in the heat consisted of 60 min of pedalling on cycle ergometer at 90% of the individually determined first ventilatory threshold. Results reveal that wind and skin sweat invalidate the use of skin infrared thermometry to estimate Tc during exercise in the heat. However, better Tc estimations were obtained in wind-restricted situations. We detected important differences between same-technology devices but different models and brands. In conclusion, there are important limitations to assess Tc accurately using non-invasive thermometers during and after exercise in the heat. Because some devices showed better validity than others did, we recommended using tympanic Braun®, and non-contact skin infrared Medisana® or Visiofocus® in wind-restricted and no sweat conditions to estimate Tc during exercise in the heat.

Keywords

Thermometric Hyperthermia Rehydration Indoor exercise Heat illness Body temperature 

Notes

Acknowledgments

We thank José Fajardo Rodríguez and Javier Sánchez Prieto for their excellent technical assistance with laboratory apparatus and assistance to the athletes. We also acknowledge the dedicated effort, commitment and professionalism of the selected group of athletes who took part in this research.

References

  1. 1.
    Bach, A. J. E., I. B. Stewart, A. E. Disher, and J. T. Costello. A comparison between conductive and infrared devices for measuring mean skin temperature at rest, during exercise in the heat, and recovery. PLoS ONE 10:e0117907, 2015.CrossRefGoogle Scholar
  2. 2.
    Bach, A. J. E., I. B. Stewart, G. M. Minett, and J. T. Costello. Does the technique employed for skin temperature assessment alter outcomes? A systematic review. Physiol Meas 36:R27–R51, 2015.CrossRefGoogle Scholar
  3. 3.
    Bernard, V., E. Staffa, V. Mornstein, and A. Bourek. Infrared camera assessment of skin surface temperature—effect of emissivity. Phys Med 29:583–591, 2013.CrossRefGoogle Scholar
  4. 4.
    Bland, J. M., and D. G. Altman. Agreement between methods of measurement with multiple observations per individual. J Biopharm Stat 17:517–582, 2007.CrossRefGoogle Scholar
  5. 5.
    Casa, D. J., S. M. Becker, M. S. Ganio, C. M. Brown, S. W. Yeargin, M. W. Roti, J. Siegler, J. A. Blowers, N. R. Glaviano, R. A. Huggins, L. E. Armstrong, and C. M. Maresh. Validity of devices that assess body temperature during outdoor exercise in the heat. J Athl Train 42:333–342, 2007.Google Scholar
  6. 6.
    Casa, D. J., J. K. DeMartini, M. F. Bergeron, D. Csillan, E. R. Eichner, R. M. Lopez, M. S. Ferrara, K. C. Miller, F. O’Connor, M. N. Sawka, and S. W. Yeargin. National Athletic Trainers’ association position statement: Exertional heat illnesses. J Athl Train 50:986–1000, 2015.CrossRefGoogle Scholar
  7. 7.
    Coso, J. D., R. Aguado-Jimenez, and R. Mora-Rodriguez. Infrared tympanic thermometry in a hot environment. Int J Sports Med 29:713–718, 2008.CrossRefGoogle Scholar
  8. 8.
    Daanen, H. A. M., S. Racinais, and J. D. Périard. Heat acclimation decay and re-induction: A systematic review and meta-analysis. Sport Med 48:409–430, 2018.CrossRefGoogle Scholar
  9. 9.
    de Andrade Fernandes, A., P. R. dos Santos Amorim, C. J. Brito, A. G. de Moura, D. G. Moreira, C. M. A. Costa, M. Sillero-Quintana, and J. C. B. Marins. Measuring skin temperature before, during and after exercise: A comparison of thermocouples and infrared thermography. Physiol Meas 35:189–203, 2014.CrossRefGoogle Scholar
  10. 10.
    Fernández-Elías, V. E., A. Martínez-Abellán, J. M. López-Gullón, R. Morán-Navarro, J. G. Pallarés, E. De la Cruz-Sánchez, and R. Mora-Rodriguez. Validity of hydration non-invasive indices during the weight cutting and official weigh-in for Olympic combat sports. PLoS ONE 9:e95336, 2014.CrossRefGoogle Scholar
  11. 11.
    Formenti, D., N. Ludwig, M. Gargano, M. Gondola, N. Dellerma, A. Caumo, and G. Alberti. Thermal imaging of exercise-associated skin temperature changes in trained and untrained female subjects. Ann Biomed Eng 41:863–871, 2013.CrossRefGoogle Scholar
  12. 12.
    Ganio, M. S., C. M. Brown, D. J. Casa, S. M. Becker, S. W. Yeargin, B. P. McDermott, L. M. Boots, P. W. Boyd, and L. E. Armstrong. Maresh CM Validity and reliability of devices that asses body temperature during indoor exercise in the heat. J Athel Train 44:124–135, 2009.CrossRefGoogle Scholar
  13. 13.
    Gasim, G. I., I. R. Musa, M. T. Abdien, and I. Adam. Accuracy of tympanic temperature measurement using an infrared tympanic membrane thermometer. BMC Res Notes 6:194, 2013.CrossRefGoogle Scholar
  14. 14.
    Giavarina, D. Understanding bland altman analysis. Biochem Med 25:141–151, 2015.CrossRefGoogle Scholar
  15. 15.
    Hildebrandt, C., C. Raschner, and K. Ammer. An overview of recent application of medical infrared thermography in sports medicine in Austria. Sensors 10:4700–4715, 2010.CrossRefGoogle Scholar
  16. 16.
    Hunt, A. P., A. J. E. Bach, D. N. Borg, J. T. Costello, and I. B. Stewart. The systematic bias of ingestible core temperature sensors requires a correction by linear regression. Front Physiol 8:260, 2017.CrossRefGoogle Scholar
  17. 17.
    Hunt, A. P., D. C. Billing, M. J. Patterson, and J. N. Caldwell. Heat strain during military training activities: The dilemma of balancing force protection and operational capability. Temperature 3:307–317, 2016.CrossRefGoogle Scholar
  18. 18.
    Irwin, R. S., C. M. Lilly, P. H. Mayo, and J. M. Rippe. Irwin and Rippe’s intensive care medicine. New York: Wolters Kluwer, 2018.Google Scholar
  19. 19.
    James, C. A., A. J. Richardson, P. W. Watt, and N. S. Maxwell. Reliability and validity of skin temperature measurement by telemetry thermistors and a thermal camera during exercise in the heat. J Therm Biol 45:141–149, 2014.CrossRefGoogle Scholar
  20. 20.
    Kistemaker, J., E. Den Hartog, and H. Daanen. Reliability of an infrared forehead skin thermometer for core temperature measurements. J Med Eng Technol 30:252–261, 2006.CrossRefGoogle Scholar
  21. 21.
    Mairiaux, P., J. C. Sagot, and V. Candas. Oral temperature as an index of core temperature during heat transients. Eur J Appl Physiol Occup Physiol 50:331–341, 1983.CrossRefGoogle Scholar
  22. 22.
    Marins, J. C. B., D. G. Moreira, S. P. Cano, M. S. Quintana, D. D. Soares, A. de Andrade Fernandes, F. S. da Silva, C. M. A. Costa, and P. R. dos Santos Amorim. Time required to stabilize thermographic images at rest. Infrared Phys Technol 65:30–35, 2014.CrossRefGoogle Scholar
  23. 23.
    Mora-Rodriguez, R. Influence of aerobic fitness on thermoregulation during exercise in the heat. Exerc Sport Sci Rev 40:79–87, 2012.CrossRefGoogle Scholar
  24. 24.
    Mora-Rodríguez, R., J. G. Pallarés, J. M. López-Gullón, Á. López-Samanes, V. E. Fernández-Elías, and J. F. Ortega. Improvements on neuromuscular performance with caffeine ingestion depend on the time-of-day. J Sci Med Sport 18:338–342, 2015.CrossRefGoogle Scholar
  25. 25.
    Moran, D. S., and L. Mendal. Core temperature measurement. Sport Med 32:879–885, 2002.CrossRefGoogle Scholar
  26. 26.
    Pallarés, J. G., R. Moran-Navarro, J. Fernando Ortega, V. Emilio Fernandez-Elias, and R. Mora-Rodriguez. Validity and reliability of ventilatory and blood lactate thresholds in well-trained cyclists. PLoS ONE 11(9):e0163389, 2016.CrossRefGoogle Scholar
  27. 27.
    Périard, J. D., G. J. S. Travers, S. Racinais, and M. N. Sawka. Cardiovascular adaptations supporting human exercise-heat acclimation. Auton Neurosci 196:52–62, 2016.CrossRefGoogle Scholar
  28. 28.
    Purssell, E., A. While, and B. Coomber. Tympanic thermometry–normal temperature and reliability. Paediatr Nurs 21:40–43, 2009.CrossRefGoogle Scholar
  29. 29.
    Quesada, J. I. Application of infrared thermography in sports science. Cham: Springer, 2017.  https://doi.org/10.1007/978-3-319-47410-6.CrossRefGoogle Scholar
  30. 30.
    Quesada, J. I., M. R. Kunzler, and F. P. Carpes. Methodological aspects of infrared thermography in human assessment. In: Application of infrared thermography in sports science, edited by J. I. Quesada. Cham: Springer, 2017, pp. 49–79.  https://doi.org/10.1007/978-3-319-47410-6_3.CrossRefGoogle Scholar
  31. 31.
    Quesada, J. I., N. Martínez, R. M. Cibrián, A. Psikuta, S. Annaheim, R. M. Rossi, J. M. Corberán, P. Pérez-Soriano, and R. Salvador. Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling. Infrared Phys Technol 72:68–76, 2015.CrossRefGoogle Scholar
  32. 32.
    Racinais, S., J. M. Alonso, A. J. Coutts, A. D. Flouris, O. Girard, J. González-Alonso, C. Hausswirth, O. Jay, J. K. W. Lee, N. Mitchell, G. P. Nassis, L. Nybo, B. M. Pluim, B. Roelands, M. N. Sawka, J. E. Wingo, and J. D. Périard. Consensus recommendations on training and competing in the heat. Scand J Med Sci Sports 25:6–19, 2015.CrossRefGoogle Scholar
  33. 33.
    Sawka, M. N., L. M. Burke, E. R. Eichner, R. J. Maughan, S. J. Montain, and N. S. Stachenfeld. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc 39:377–390, 2007.CrossRefGoogle Scholar
  34. 34.
    Sawka, M. N., and K. B. Pandolf. Physical exercise in hot climates: physiology, performance, and biomedical issues. In: Medical aspects of harsh environments. Textbooks of military medicine, edited by K. Pandolf, and R. Burr. Washington, D.C.: Office of the Surgeon General, United States Army, 2001, pp. 87–133.Google Scholar
  35. 35.
    Steck, L. N., E. M. Sparrow, and J. P. Abraham. Non-invasive measurement of the human core temperature. Int J Heat Mass Transf 54:975–982, 2011.CrossRefGoogle Scholar
  36. 36.
    Stewart, K. J., K. L. Turner, A. C. Bacher, J. R. DeRegis, J. Sung, M. Tayback, and P. Ouyang. Are fitness, activity, and fatness associated with health-related quality of life and mood in older persons? J Cardiopulm Rehabil 23:115–121, 2003.CrossRefGoogle Scholar
  37. 37.
    Taylor, N. A. S., M. J. Tipton, and G. P. Kenny. Considerations for the measurement of core, skin and mean body temperatures. J Therm Biol 46:72–101, 2014.CrossRefGoogle Scholar
  38. 38.
    Teunissen, L. P. J., A. de Haan, J. J. de Koning, and H. A. M. Daanen. Telemetry pill versus rectal and esophageal temperature during extreme rates of exercise-induced core temperature change. Physiol Meas 33:915–924, 2012.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Ricardo Morán-Navarro
    • 1
    • 2
  • Javier Courel-Ibáñez
    • 1
  • Alejandro Martínez-Cava
    • 1
  • Elena Conesa-Ros
    • 1
  • Alejandro Sánchez-Pay
    • 1
  • Ricardo Mora-Rodriguez
    • 2
  • Jesús G. Pallarés
    • 1
    • 2
    Email author return OK on get
  1. 1.Human Performance and Sports Science LaboratoryUniversity of MurciaMurciaSpain
  2. 2.Exercise Physiology LaboratoryUniversity of Castilla-La ManchaToledoSpain

Personalised recommendations