Annals of Biomedical Engineering

, Volume 46, Issue 12, pp 2091–2101 | Cite as

A Combined Approach for the Analysis of Ocular Fluid Dynamics in the Presence of Saccadic Movements

  • Marco Ferroni
  • Matteo Giuseppe Cereda
  • Federica Boschetti


One of the main ocular diseases is age-related macular degeneration, actually treated with antibodies injections into the eye. This problem has been faced by computational approaches, taking into account either the influence of the tissues surrounding the vitreous, or the saccades. The aim of this work is to propose a combined fluid dynamic model of the vitreous chamber that analyses the impact of the saccades on the fluid dynamic mechanisms. The ocular vitreous humor was modeled considering liquefaction occurring in presence of age-related macular degeneration. We identified two kinds of boundary conditions, one related to the physiological environment outside the chamber, and one related to the saccades. The scleral hydraulic conductivity was evaluated by means of experimental permeability tests. An exponential decay was used to describe the trend of the scleral hydraulic conductivity with the acting pressure drop. The streamline analysis shows two main stagnant regions on the equatorial plane and peculiar fluid dynamics in absence of saccades. This study demonstrates the major role played by the saccades in determining the fluid dynamic mechanisms inside the vitreous chamber of the eye and represents a powerful tool to investigate vitreous dynamics and its relation to clinical issues.


Computational fluid dynamics Vitreous Saccades Age-related macular degeneration Scleral hydraulic conductivity 



Age-related macular degeneration


Vascular endothelial growth factors


Particle image velocimetry


Computational fluid dynamics




Intraocular pressure


Hydraulic conductivity



This study was funded by the Italian Ophthalmological Society.

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Supplementary material

10439_2018_2110_MOESM1_ESM.gif (591 kb)
Supplementary material 1 (GIF 590 kb)
10439_2018_2110_MOESM2_ESM.gif (526 kb)
Supplementary material 2 (GIF 525 kb)


  1. 1.
    Abouali, O., A. Modareszadeh, A. Ghaffariyeh, and J. Tu. Numerical simulation of the fluid dynamics in vitreous cavity due to saccadic eye movement. Med. Eng. Phys. 34:681–692, 2012.CrossRefGoogle Scholar
  2. 2.
    Argento, A., W. Kim, F. W. Rozsa, K. L. DeBolt, S. Zikanova, and J. R. Richards. Shear behavior of bovine scleral tissue. J. Biomech. Eng. 136:071011, 2014.CrossRefGoogle Scholar
  3. 3.
    Balachandran, R. K., and V. H. Barocas. Computer modeling of drug delivery to the posterior eye: effect of active transport and loss to choroidal blood flow. Pharm. Res. 25:2685–2696, 2008.CrossRefGoogle Scholar
  4. 4.
    Balachandran, R. K., and V. H. Barocas. Contribution of saccadic motion to intravitreal drug transport: theoretical analysis. Pharm. Res. 28:1049–1064, 2011.CrossRefGoogle Scholar
  5. 5.
    Balazs, E. A., and M. T. Flood. Age-related changes in the physical and chemical structure of human vitreous. Third International Congress of Eye Research, 1978.Google Scholar
  6. 6.
    Becker, W. The neurobiology of saccadic eye movements. Metrics. Rev. Oculomot. Res. 3:13, 1989.Google Scholar
  7. 7.
    Bhisitkul, R. B. Anticipation for enzymatic vitreolysis. Br. J. Ophthalmol. 85:1–2, 2001.CrossRefGoogle Scholar
  8. 8.
    Bonfiglio, A., A. Lagazzo, R. Repetto, and A. Stocchino. An experimental model of vitreous motion induced by eye rotations. Eye Vis. 2:10, 2015.CrossRefGoogle Scholar
  9. 9.
    Chan, C. M., J. H. Yu, L. J. Chen, C. H. Huang, C. T. Lee, T. C. Lin, and D. Z. Liu. Posterior pole retinal thickness measurements by the retinal thickness analyzer in healthy Chinese subjects. Retina 26:176–181, 2006.CrossRefGoogle Scholar
  10. 10.
    Cima, M. J., H. Lee, K. Daniel, L. M. Tanenbaum, A. Mantzavinou, K. C. Spencer, Q. Ong, J. C. Sy, J. Santini, C. M. Schoellhammer, D. Blankschtein, and R. S. Langer. Single compartment drug delivery. J. Control Release 190:157–171, 2014.CrossRefGoogle Scholar
  11. 11.
    David, T., S. Smye, T. Dabbs, and T. James. A model for the fluid motion of vitreous humour of the human eye during saccadic movement. Phys. Med. Biol. 43:1385–1399, 1998.CrossRefGoogle Scholar
  12. 12.
    Fatt, I., and B. O. Hedbys. Flow of water in the sclera. Exp. Eye Res. 10:243–249, 1970.CrossRefGoogle Scholar
  13. 13.
    Ferrara, N. Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy. Nat. Publ. Gr. 16:1107–1111, 2010.Google Scholar
  14. 14.
    Ferrara, N., H. P. Gerber, and J. LeCouter. The biology of VEGF and its receptors. Nat Med 9:669–676, 2003.CrossRefGoogle Scholar
  15. 15.
    Friedrich, S., Y.-L. Cheng, and B. Saville. Drug distribution in the vitreous humor of the human eye: the effects of intravitreal injection position and volume. Curr. Eye Res. 16:663–669, 1997.CrossRefGoogle Scholar
  16. 16.
    Haghjou, N., M. J. Abdekhodaie, Y. L. Cheng, and M. Saadatmand. Computer modeling of drug distribution after intravitreal administration. World Acad. Sci. Eng. Technol. 77:706–716, 2011.Google Scholar
  17. 17.
    Ikuno, Y., K. Kawaguchi, T. Nouchi, and Y. Yasuno. Choroidal thickness in healthy Japanese subjects. Investig. Opthalmol. Vis. Sci. 51:2173, 2010.CrossRefGoogle Scholar
  18. 18.
    Jackson, T. L., A. Hussain, A. Hodgetts, A. M. S. Morley, J. Hillenkamp, P. M. Sullivan, and J. Marshall. Human scleral hydraulic conductivity: age-related changes, topographical variation, and potential scleral outflow facility. Investig. Ophthalmol. Vis. Sci. 47:4942–4946, 2006.CrossRefGoogle Scholar
  19. 19.
    Lai, W. M., V. C. Mow, and V. Roth. Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. J. Biomech. Eng. 103:61–66, 1981.CrossRefGoogle Scholar
  20. 20.
    Lee, B., M. Litt, and G. Buchsbaum. Rheology of the vitreous body. Part I: Viscoelasticity of human vitreous. Biorheology 29:521–533, 1992.CrossRefGoogle Scholar
  21. 21.
    Loudon, C., and A. Tordesillas. The use of the dimensionless Womersley number to characterize the unsteady nature of internal flow. J. Theor. Biol. 191:63–78, 1998.CrossRefGoogle Scholar
  22. 22.
    Missel, P. J. Hydraulic flow and vascular clearance influences on intravitreal drug delivery. Pharm. Res. 19:1636–1647, 2002.CrossRefGoogle Scholar
  23. 23.
    Modareszadeh, A., O. Abouali, A. Ghaffarieh, and G. Ahmadi. Saccade movements effect on the intravitreal drug delivery in vitreous substitutes: a numerical study. Biomech. Model. Mechanobiol. 12:281–290, 2013.CrossRefGoogle Scholar
  24. 24.
    Repetto, R., J. H. Siggers, and A. Stocchino. Mathematical model of flow in the vitreous humor induced by saccadic eye rotations: effect of geometry. Biomech. Model. Mechanobiol. 9:65–76, 2010.CrossRefGoogle Scholar
  25. 25.
    Repetto, R., A. Stocchino, and C. Cafferata. Experimental investigation of vitreous humour motion within a human eye model. Phys. Med. Biol. 50:4729–4743, 2005.CrossRefGoogle Scholar
  26. 26.
    Romano, M. R., J. L. Vallejo-Garcia, V. Romano, M. Angi, P. Vinciguerra, and C. Costagliola. Thermodynamics of vitreoretinal surgery. Curr. Eye Res. 38:371–374, 2013.CrossRefGoogle Scholar
  27. 27.
    Rosenfeld, P. J., D. M. Brown, J. S. Heier, D. S. Boyer, P. K. Kaiser, C. Y. Chung, and R. Y. Kim. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 355:1419–1431, 2006.CrossRefGoogle Scholar
  28. 28.
    Rosenfeld, P. J., S. D. Schwartz, M. S. Blumenkranz, J. W. Miller, J. A. Haller, J. D. Reimann, W. L. Greene, and N. Shams. Maximum tolerated dose of a humanized anti-vascular endothelial growth factor antibody fragment for treating neovascular age-related macular degeneration. Ophthalmology 112:1048.e4–1053.e4, 2005.CrossRefGoogle Scholar
  29. 29.
    Schwartz, S. G., I. U. Scott, H. W. Flynn, and M. W. Stewart. Drug delivery techniques for treating age-related macular degeneration. Expert Opin. Drug Deliv. 11:61–68, 2014.CrossRefGoogle Scholar
  30. 30.
    Sekuler, R., D. Kline, and K. Dismukes. Aging and visual function of military pilots: a review. DTIC Document, 1982.Google Scholar
  31. 31.
    Stay, M. S., J. Xu, T. W. Randolph, and V. H. Barocas. Computer simulation of convective and diffusive transport of controlled-release drugs in the vitreous humor. Pharm. Res. 20:96–102, 2003.CrossRefGoogle Scholar
  32. 32.
    Stocchino, A., R. Repetto, and C. Cafferata. Eye rotation induced dynamics of a Newtonian fluid within the vitreous cavity: the effect of the chamber shape. Phys. Med. Biol. 52:2021–2034, 2007.CrossRefGoogle Scholar
  33. 33.
    Stocchino, A., R. Repetto, and J. H. Siggers. Mixing processes in the vitreous chamber induced by eye rotations. Phys. Med. Biol. 55:453–467, 2010.CrossRefGoogle Scholar
  34. 34.
    Vaiano, A. S., E. Coronado Quitllet, G. Zinzanella, G. De Benedetti, and G. Caramello. Ultrasound measurements of the distance between limbus and retinal break in eyes with media opacities. Retina 37:1400–1406, 2017.CrossRefGoogle Scholar
  35. 35.
    Vurgese, S., S. Panda-Jonas, and J. B. Jonas. Scleral thickness in human eyes. PLoS ONE 7:e29692, 2012.CrossRefGoogle Scholar
  36. 36.
    Xu, J., J. J. Heys, V. H. Barocas, and T. W. Randolph. Permeability and diffusion in vitreous humor: implications for drug delivery. Pharm. Res. 17:664–669, 2000.CrossRefGoogle Scholar
  37. 37.
    Zetterberg, M. Age-related eye disease and gender. Maturitas 83:19–26, 2016.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.LaBS, Chemistry Materials and Chemical Engineering Department “Giulio Natta”Politecnico di MilanoMilanItaly
  2. 2.Eye Clinic, Department of Biomedical and Clinical Science “Luigi Sacco”, Sacco HospitalUniversity of MilanMilanItaly

Personalised recommendations