Advertisement

A Combined Approach for the Analysis of Ocular Fluid Dynamics in the Presence of Saccadic Movements

  • Marco Ferroni
  • Matteo Giuseppe Cereda
  • Federica Boschetti
Article
  • 33 Downloads

Abstract

One of the main ocular diseases is age-related macular degeneration, actually treated with antibodies injections into the eye. This problem has been faced by computational approaches, taking into account either the influence of the tissues surrounding the vitreous, or the saccades. The aim of this work is to propose a combined fluid dynamic model of the vitreous chamber that analyses the impact of the saccades on the fluid dynamic mechanisms. The ocular vitreous humor was modeled considering liquefaction occurring in presence of age-related macular degeneration. We identified two kinds of boundary conditions, one related to the physiological environment outside the chamber, and one related to the saccades. The scleral hydraulic conductivity was evaluated by means of experimental permeability tests. An exponential decay was used to describe the trend of the scleral hydraulic conductivity with the acting pressure drop. The streamline analysis shows two main stagnant regions on the equatorial plane and peculiar fluid dynamics in absence of saccades. This study demonstrates the major role played by the saccades in determining the fluid dynamic mechanisms inside the vitreous chamber of the eye and represents a powerful tool to investigate vitreous dynamics and its relation to clinical issues.

Keywords

Computational fluid dynamics Vitreous Saccades Age-related macular degeneration Scleral hydraulic conductivity 

Abbreviations

AMD

Age-related macular degeneration

VEGF

Vascular endothelial growth factors

PIV

Particle image velocimetry

CFD

Computational fluid dynamics

RCS

Retina–choroid–sclera

IOP

Intraocular pressure

HC

Hydraulic conductivity

Notes

Acknowledgments

This study was funded by the Italian Ophthalmological Society.

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Supplementary material

10439_2018_2110_MOESM1_ESM.gif (591 kb)
Supplementary material 1 (GIF 590 kb)
10439_2018_2110_MOESM2_ESM.gif (526 kb)
Supplementary material 2 (GIF 525 kb)

References

  1. 1.
    Abouali, O., A. Modareszadeh, A. Ghaffariyeh, and J. Tu. Numerical simulation of the fluid dynamics in vitreous cavity due to saccadic eye movement. Med. Eng. Phys. 34:681–692, 2012.CrossRefPubMedGoogle Scholar
  2. 2.
    Argento, A., W. Kim, F. W. Rozsa, K. L. DeBolt, S. Zikanova, and J. R. Richards. Shear behavior of bovine scleral tissue. J. Biomech. Eng. 136:071011, 2014.CrossRefGoogle Scholar
  3. 3.
    Balachandran, R. K., and V. H. Barocas. Computer modeling of drug delivery to the posterior eye: effect of active transport and loss to choroidal blood flow. Pharm. Res. 25:2685–2696, 2008.CrossRefPubMedGoogle Scholar
  4. 4.
    Balachandran, R. K., and V. H. Barocas. Contribution of saccadic motion to intravitreal drug transport: theoretical analysis. Pharm. Res. 28:1049–1064, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Balazs, E. A., and M. T. Flood. Age-related changes in the physical and chemical structure of human vitreous. Third International Congress of Eye Research, 1978.Google Scholar
  6. 6.
    Becker, W. The neurobiology of saccadic eye movements. Metrics. Rev. Oculomot. Res. 3:13, 1989.PubMedGoogle Scholar
  7. 7.
    Bhisitkul, R. B. Anticipation for enzymatic vitreolysis. Br. J. Ophthalmol. 85:1–2, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bonfiglio, A., A. Lagazzo, R. Repetto, and A. Stocchino. An experimental model of vitreous motion induced by eye rotations. Eye Vis. 2:10, 2015.CrossRefGoogle Scholar
  9. 9.
    Chan, C. M., J. H. Yu, L. J. Chen, C. H. Huang, C. T. Lee, T. C. Lin, and D. Z. Liu. Posterior pole retinal thickness measurements by the retinal thickness analyzer in healthy Chinese subjects. Retina 26:176–181, 2006.CrossRefPubMedGoogle Scholar
  10. 10.
    Cima, M. J., H. Lee, K. Daniel, L. M. Tanenbaum, A. Mantzavinou, K. C. Spencer, Q. Ong, J. C. Sy, J. Santini, C. M. Schoellhammer, D. Blankschtein, and R. S. Langer. Single compartment drug delivery. J. Control Release 190:157–171, 2014.CrossRefPubMedGoogle Scholar
  11. 11.
    David, T., S. Smye, T. Dabbs, and T. James. A model for the fluid motion of vitreous humour of the human eye during saccadic movement. Phys. Med. Biol. 43:1385–1399, 1998.CrossRefPubMedGoogle Scholar
  12. 12.
    Fatt, I., and B. O. Hedbys. Flow of water in the sclera. Exp. Eye Res. 10:243–249, 1970.CrossRefPubMedGoogle Scholar
  13. 13.
    Ferrara, N. Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy. Nat. Publ. Gr. 16:1107–1111, 2010.Google Scholar
  14. 14.
    Ferrara, N., H. P. Gerber, and J. LeCouter. The biology of VEGF and its receptors. Nat Med 9:669–676, 2003.CrossRefPubMedGoogle Scholar
  15. 15.
    Friedrich, S., Y.-L. Cheng, and B. Saville. Drug distribution in the vitreous humor of the human eye: the effects of intravitreal injection position and volume. Curr. Eye Res. 16:663–669, 1997.CrossRefPubMedGoogle Scholar
  16. 16.
    Haghjou, N., M. J. Abdekhodaie, Y. L. Cheng, and M. Saadatmand. Computer modeling of drug distribution after intravitreal administration. World Acad. Sci. Eng. Technol. 77:706–716, 2011.Google Scholar
  17. 17.
    Ikuno, Y., K. Kawaguchi, T. Nouchi, and Y. Yasuno. Choroidal thickness in healthy Japanese subjects. Investig. Opthalmol. Vis. Sci. 51:2173, 2010.CrossRefGoogle Scholar
  18. 18.
    Jackson, T. L., A. Hussain, A. Hodgetts, A. M. S. Morley, J. Hillenkamp, P. M. Sullivan, and J. Marshall. Human scleral hydraulic conductivity: age-related changes, topographical variation, and potential scleral outflow facility. Investig. Ophthalmol. Vis. Sci. 47:4942–4946, 2006.CrossRefGoogle Scholar
  19. 19.
    Lai, W. M., V. C. Mow, and V. Roth. Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. J. Biomech. Eng. 103:61–66, 1981.CrossRefPubMedGoogle Scholar
  20. 20.
    Lee, B., M. Litt, and G. Buchsbaum. Rheology of the vitreous body. Part I: Viscoelasticity of human vitreous. Biorheology 29:521–533, 1992.CrossRefPubMedGoogle Scholar
  21. 21.
    Loudon, C., and A. Tordesillas. The use of the dimensionless Womersley number to characterize the unsteady nature of internal flow. J. Theor. Biol. 191:63–78, 1998.CrossRefPubMedGoogle Scholar
  22. 22.
    Missel, P. J. Hydraulic flow and vascular clearance influences on intravitreal drug delivery. Pharm. Res. 19:1636–1647, 2002.CrossRefPubMedGoogle Scholar
  23. 23.
    Modareszadeh, A., O. Abouali, A. Ghaffarieh, and G. Ahmadi. Saccade movements effect on the intravitreal drug delivery in vitreous substitutes: a numerical study. Biomech. Model. Mechanobiol. 12:281–290, 2013.CrossRefPubMedGoogle Scholar
  24. 24.
    Repetto, R., J. H. Siggers, and A. Stocchino. Mathematical model of flow in the vitreous humor induced by saccadic eye rotations: effect of geometry. Biomech. Model. Mechanobiol. 9:65–76, 2010.CrossRefPubMedGoogle Scholar
  25. 25.
    Repetto, R., A. Stocchino, and C. Cafferata. Experimental investigation of vitreous humour motion within a human eye model. Phys. Med. Biol. 50:4729–4743, 2005.CrossRefPubMedGoogle Scholar
  26. 26.
    Romano, M. R., J. L. Vallejo-Garcia, V. Romano, M. Angi, P. Vinciguerra, and C. Costagliola. Thermodynamics of vitreoretinal surgery. Curr. Eye Res. 38:371–374, 2013.CrossRefPubMedGoogle Scholar
  27. 27.
    Rosenfeld, P. J., D. M. Brown, J. S. Heier, D. S. Boyer, P. K. Kaiser, C. Y. Chung, and R. Y. Kim. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 355:1419–1431, 2006.CrossRefPubMedGoogle Scholar
  28. 28.
    Rosenfeld, P. J., S. D. Schwartz, M. S. Blumenkranz, J. W. Miller, J. A. Haller, J. D. Reimann, W. L. Greene, and N. Shams. Maximum tolerated dose of a humanized anti-vascular endothelial growth factor antibody fragment for treating neovascular age-related macular degeneration. Ophthalmology 112:1048.e4–1053.e4, 2005.CrossRefGoogle Scholar
  29. 29.
    Schwartz, S. G., I. U. Scott, H. W. Flynn, and M. W. Stewart. Drug delivery techniques for treating age-related macular degeneration. Expert Opin. Drug Deliv. 11:61–68, 2014.CrossRefPubMedGoogle Scholar
  30. 30.
    Sekuler, R., D. Kline, and K. Dismukes. Aging and visual function of military pilots: a review. DTIC Document, 1982.Google Scholar
  31. 31.
    Stay, M. S., J. Xu, T. W. Randolph, and V. H. Barocas. Computer simulation of convective and diffusive transport of controlled-release drugs in the vitreous humor. Pharm. Res. 20:96–102, 2003.CrossRefPubMedGoogle Scholar
  32. 32.
    Stocchino, A., R. Repetto, and C. Cafferata. Eye rotation induced dynamics of a Newtonian fluid within the vitreous cavity: the effect of the chamber shape. Phys. Med. Biol. 52:2021–2034, 2007.CrossRefPubMedGoogle Scholar
  33. 33.
    Stocchino, A., R. Repetto, and J. H. Siggers. Mixing processes in the vitreous chamber induced by eye rotations. Phys. Med. Biol. 55:453–467, 2010.CrossRefPubMedGoogle Scholar
  34. 34.
    Vaiano, A. S., E. Coronado Quitllet, G. Zinzanella, G. De Benedetti, and G. Caramello. Ultrasound measurements of the distance between limbus and retinal break in eyes with media opacities. Retina 37:1400–1406, 2017.CrossRefPubMedGoogle Scholar
  35. 35.
    Vurgese, S., S. Panda-Jonas, and J. B. Jonas. Scleral thickness in human eyes. PLoS ONE 7:e29692, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Xu, J., J. J. Heys, V. H. Barocas, and T. W. Randolph. Permeability and diffusion in vitreous humor: implications for drug delivery. Pharm. Res. 17:664–669, 2000.CrossRefPubMedGoogle Scholar
  37. 37.
    Zetterberg, M. Age-related eye disease and gender. Maturitas 83:19–26, 2016.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.LaBS, Chemistry Materials and Chemical Engineering Department “Giulio Natta”Politecnico di MilanoMilanItaly
  2. 2.Eye Clinic, Department of Biomedical and Clinical Science “Luigi Sacco”, Sacco HospitalUniversity of MilanMilanItaly

Personalised recommendations