Annals of Biomedical Engineering

, Volume 46, Issue 3, pp 452–463 | Cite as

AngleNav: MEMS Tracker to Facilitate CT-Guided Puncture

  • Rui Li
  • Sheng Xu
  • William F. Pritchard
  • John W. Karanian
  • Venkatesh P. Krishnasamy
  • Bradford J. Wood
  • Zion Tsz Ho TseEmail author


As a low-cost needle navigation system, AngleNav may be used to improve the accuracy, speed, and ease of CT-guided needle punctures. The AngleNav hardware includes a wireless device with a microelectromechanical (MEMS) tracker that can be attached to any standard needle. The physician defines the target, desired needle path and skin entry point on a CT slice image. The accuracy of AngleNav was first tested in a 3D-printed calibration platform in a benchtop setting. An abdominal phantom study was then performed in a CT scanner to validate the accuracy of the device’s angular measurement. Finally, an in vivo swine study was performed to guide the needle towards liver targets (n = 8). CT scans of the targets were used to quantify the angular errors and needle tip-to-targeting distance errors between the planned needle path and the final needle position. The MEMS tracker showed a mean angular error of 0.01° with a standard deviation (SD) of 0.62° in the benchtop setting. The abdominal phantom test showed a mean angular error of 0.87° with an SD of 1.19° and a mean tip-to-target distance error of 4.89 mm with an SD of 1.57 mm. The animal experiment resulted in a mean angular error of 6.6° with an SD of 1.9° and a mean tip-to-target distance error of 8.7 mm with an SD of 3.1 mm. These results demonstrated the feasibility of AngleNav for CT-guided interventional workflow. The angular and distance errors were reduced by 64.4 and 54.8% respectively if using AngleNav instead of freehand insertion, with a limited number of operators. AngleNav assisted the physicians to deliver accurate needle insertion during CT-guided intervention. The device could potentially reduce the learning curve for physicians to perform CT-guided needle targeting.


CT-guided biopsy or ablation MEMS sensor Tracker Angular tracking 



NIH does not endorse or recommend any commercial products, processes, or services. The content of this manuscript does not necessarily reflect the views or policies of the Department of Health and Human Services, nor do mention of trade names, commercial products, or organizations imply endorsement by the USA Government. This work was supported by the Center for Interventional Oncology in the Intramural Research Program of the National Institutes of Health (NIH), grants 1ZIDBC011242 and 1ZIDCL040015.

Conflict of Interest

NIH and authors may own intellectual property in the field.


  1. 1.
    Abolhassani, N., R. V. Patel, and F. Ayazi. Minimization of needle deflection in robot-assisted percutaneous therapy. Int. J. Med. Robot. 3(2):140–148, 2007.CrossRefPubMedGoogle Scholar
  2. 2.
    Amin, Z., J. J. Donald, A. Masters, R. Kant, A. C. Steger, S. G. Bown, and W. R. Lees. Hepatic metastases: interstitial laser photocoagulation with real-time US monitoring and dynamic CT evaluation of treatment. Radiology 187(2):339–347, 1993.CrossRefPubMedGoogle Scholar
  3. 3.
    Bartling S., Kachelrieß, M., Kuntz, J., Gupta, R., Walsh, C. Wang, I. S. CT-guided interventions: current practice and future directions. In: Intraoperative imaging and image-guided therapy, edited by F. A. Jolesz. Newyork: Springer, 2014.Google Scholar
  4. 4.
    Brown, K. T., G. I. Getrajdman, and J. F. Botet. Clinical trial of the Bard CT guide system. J. Vasc. Interv. Radiol. 6(3):405–410, 1995.CrossRefPubMedGoogle Scholar
  5. 5.
    CAScination. CAS-ONE Liver, 2017. Accessed 16 October 2017.
  6. 6.
    Chellathurai, A., S. Kanhirat, K. Chokkappan, T. S. Swaminathan, and N. Kulasekaran. Technical note: CT-guided biopsy of lung masses using an automated guiding apparatus. Indian J. Radiol. Imaging 19(3):206–207, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cobb, J., J. Henckel, P. Gomes, and S. Harris. Hands-on robotic unicompartmental knee replacement. Bone Joint 88:188–197, 2006.CrossRefGoogle Scholar
  8. 8.
    Daly, B., and P. A. Templeton. Real-time CT fluoroscopy: evolution of an interventional tool. Radiology 211(2):309–315, 1999.CrossRefPubMedGoogle Scholar
  9. 9.
    Dou, H., S. Jiang, Z. Yang, L. Sun, X. Ma, and B. Huo. Design and validation of a CT-guided robotic system for lung cancer brachytherapy. Med. Phys. 44(9):4828–4837, 2017.CrossRefPubMedGoogle Scholar
  10. 10.
    Fichtinger, G., J. P. Fiene, C. W. Kennedy, G. Kronreif, I. Iordachita, D. Y. Song, E. C. Burdette, and P. Kazanzides. Robotic assistance for ultrasound-guided prostate brachytherapy. Med. Image Anal. 12(5):535–545, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Frederick, P. R., T. H. Brown, M. H. Miller, A. L. Bahr, and K. H. Taylor. A light-guidance system to be used for CT-guided biopsy. Radiology 154(2):535–536, 1985.CrossRefPubMedGoogle Scholar
  12. 12.
    Froelich, J. J., B. Saar, M. Hoppe, N. Ishaque, E. M. Walthers, and J. Regn. Real-time Ct-fluoroscopy for guidance of percutaneous drainage procedures. J. Vasc. Interv. Radiol. 9(5):735–740, 1998.CrossRefPubMedGoogle Scholar
  13. 13.
    Gangi, A., B. Kastler, J. M. Arhan, A. Klinkert, J. M. Grampp, and J. L. Dietemann. A compact laser beam guidance system for interventional CT. J. Comput. Assist. Tomogr. 18(2):326–328, 1994.CrossRefPubMedGoogle Scholar
  14. 14.
    Glossop, N. D. Advantages of optical compared with electromagnetic tracking. JBJS 91(Supplement_1):23–28, 2009.CrossRefGoogle Scholar
  15. 15.
    GmbH ASTS. Quick and uncomplicated CT-guided interventions on the highest level with 3D-LNS, 2017. Accessed 16 October 2017.
  16. 16.
    Grasso, R. F., E. Faiella, G. Luppi, E. Schena, F. Giurazza, R. Del Vescovo, F. D’Agostino, R. L. Cazzato, and B. B. Zobel. Percutaneous lung biopsy: comparison between an augmented reality CT navigation system and standard CT-guided technique. Int. J. Comput. Assist. Radiol. Surg. 8(5):837–848, 2013.CrossRefPubMedGoogle Scholar
  17. 17.
    Gupta, A., M. E. Allaf, L. R. Kavoussi, T. W. Jarrett, D. Y. Chan, L.-M. Su, and S. B. Solomon. Computerized tomography guided percutaneous renal cryoablation with the patient under conscious sedation: initial clinical experience. J. Urol. 175(2):447–453, 2006.CrossRefPubMedGoogle Scholar
  18. 18.
    Haaga, J. R., and R. J. Alfidi. Precise biopsy localization by computer tomography. Radiology 118(3):603–607, 1976.CrossRefPubMedGoogle Scholar
  19. 19.
    Haaga, J. R., R. J. Alfidi, T. R. Havrilla, A. M. Cooperman, F. E. Seidelmann, and N. E. Reich. CT detection and aspiration of abdominal abscesses. AJR 128(3):465–474, 1977.CrossRefPubMedGoogle Scholar
  20. 20.
    Hassfeld, S., and J. Mühling. Comparative examination of the accuracy of a mechanical and an optical system in CT and MRT based instrument navigation. Int. J. Oral Maxillofac. Surg. 29(6):400–407, 2000.CrossRefPubMedGoogle Scholar
  21. 21.
    Howard, M. H., and R. C. Nelson. An electronic device for needle placement during sonographically guided percutaneous intervention. Radiology 218(3):905–911, 2001.CrossRefPubMedGoogle Scholar
  22. 22.
    Hruby, W., and H. Muschik. Belt device for simplified CT-guided puncture and biopsy: a technical note. Cardiovasc. Intervent. Radiol. 10(5):301–302, 1987.CrossRefPubMedGoogle Scholar
  23. 23.
    Jacobi, V., A. Thalhammer, and J. Kirchner. Value of a laser guidance system for CT interventions: a phantom study. Eur. Radiol. 9(1):137–140, 1999.CrossRefPubMedGoogle Scholar
  24. 24.
    Jakopec, M., F. Baena, and S. J. Harris. The hands-on orthopaedic robot “Acrobot”: early clinical trials of total knee replacement surgery. IEEE Trans. Robot. 19(5):902–911, 2003.CrossRefGoogle Scholar
  25. 25.
    Kettenbach, J., L. Kara, G. Toporek, M. Fuerst, and G. Kronreif. A robotic needle-positioning and guidance system for CT-guided puncture: ex vivo results. Minim. Invasive Ther. Allied Technol. 23(5):271–278, 2014.CrossRefPubMedGoogle Scholar
  26. 26.
    Kim, E., T. J. Ward, R. S. Patel, A. M. Fischman, S. Nowakowski, and R. A. Lookstein. CT-guided liver biopsy with electromagnetic tracking: results from a single-center prospective randomized controlled trial. AJR 203(6):W715–W723, 2014.CrossRefPubMedGoogle Scholar
  27. 27.
    Kloeppel, R., T. Weisse, F. Deckert, W. Wilke, and S. Pecher. CT-guided intervention using a patient laser marker system. Eur. Radiol. 10(6):1010–1014, 2000.CrossRefPubMedGoogle Scholar
  28. 28.
    Krombach, G. A., and A. Mahnken. US-guided nephrostomy with the aid of a magnetic field-based navigation device in the porcine pelvicaliceal system. J. Vasc. Interv. Radiol. 12(5):623–628, 2001.CrossRefPubMedGoogle Scholar
  29. 29.
    Leschka, S. C., D. Babic, S. El Shikh, C. Wossmann, M. Schumacher, and C. A. Taschner. C-arm cone beam computed tomography needle path overlay for image-guided procedures of the spine and pelvis. Neuroradiology 54(3):215–223, 2012.CrossRefPubMedGoogle Scholar
  30. 30.
    Ltd PHP. MAXIO is a USFDA 510(k) approved device, 2017. Accessed 16 October 2017.
  31. 31.
    Martinez, R. M., W. Ptacek, W. Schweitzer, G. Kronreif, M. Fürst, M. J. Thali, and L. C. Ebert. CT-guided, minimally invasive, postmortem needle biopsy using the B-rob II needle-positioning robot. J. Forens. Sci. 59(2):517–521, 2014.CrossRefGoogle Scholar
  32. 32.
    Mbalisike, E. C., T. J. Vogl, S. Zangos, K. Eichler, P. Balakrishnan, and J. Paul. Image-guided microwave thermoablation of hepatic tumours using novel robotic guidance: an early experience. Eur. Radiol. 25(2):454–462, 2015.CrossRefPubMedGoogle Scholar
  33. 33.
    Miaux, Y., A. Guermazi, D. Gossot, P. Bourrier, D. Angoulvant, A. Khairoune, C. Turki, and E. Bouche. Laser guidance system for CT-guided procedures. Radiology 194(1):282–284, 1995.CrossRefPubMedGoogle Scholar
  34. 34.
    Moser, C., J. Becker, M. Deli, M. Busch, M. Boehme, and D. H. W. Groenemeyer. A novel laser navigation system reduces radiation exposure and improves accuracy and workflow of CT-guided spinal interventions: a prospective, randomized, controlled, clinical trial in comparison to conventional freehand puncture. Eur. J. Radiol. 82(4):627–632, 2013.CrossRefPubMedGoogle Scholar
  35. 35.
    NeoRad. SimpliCT, 2017. Accessed 16 October 2017.
  36. 36.
  37. 37.
    Onik, G., E. R. Cosman, T. H. Wells, Jr, H. I. Goldberg, A. A. Moss, P. Costello, R. A. Kane, W. I. Hoddick, and B. Demas. CT-guided aspirations for the body: comparison of hand guidance with stereotaxis. Radiology 166(2):389–394, 1988.CrossRefPubMedGoogle Scholar
  38. 38.
    Onik, G., P. Costello, E. Cosman, T. Wells, Jr, H. Goldberg, A. Moss, R. Kane, M. E. Clouse, W. Hoddick, S. Moore, et al. CT body stereotaxis: an aid for CT-guided biopsies. AJR 146(1):163–168, 1986.CrossRefPubMedGoogle Scholar
  39. 39.
    Ozdoba, C., K. Voigt, and F. Nusslin. New device for CT-targeted percutaneous punctures. Radiology 180(2):576–578, 1991.CrossRefPubMedGoogle Scholar
  40. 40.
    Palestrant, A. M. Comprehensive approach to CT-guided procedures with a hand-held guidance device. Radiology 174(1):270–272, 1990.CrossRefPubMedGoogle Scholar
  41. 41.
    Penzkofer, T., P. Bruners, P. Isfort, F. Schoth, R. W. Gunther, T. Schmitz-Rode, and A. H. Mahnken. Free-hand CT-based electromagnetically guided interventions: accuracy, efficiency and dose usage. Minim. Invasive. Ther. Allied Technol. 20(4):226–233, 2011.CrossRefPubMedGoogle Scholar
  42. 42.
    Pereles, F. S., M. Baker, R. Baldwin, E. Krupinski, and E. C. Unger. Accuracy of CT biopsy: laser guidance versus conventional freehand techniques. Acad. Radiol. 5(11):766–770, 1998.CrossRefPubMedGoogle Scholar
  43. 43.
    Reyes, G. D. A guidance device for CT-guided procedures. Radiology 176(3):863–864, 1990.CrossRefPubMedGoogle Scholar
  44. 44.
    Ryan, E. R., C. T. Sofocleous, H. Schöder, J. A. Carrasquillo, S. Nehmeh, S. M. Larson, R. Thornton, R. H. Siegelbaum, J. P. Erinjeri, and S. B. Solomon. Split-dose technique for FDG PET/CT–guided percutaneous ablation: a method to facilitate lesion targeting and to provide immediate assessment of treatment effectiveness. Radiology 268(1):288–295, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Schulz, B., K. Eichler, P. Siebenhandl, T. Gruber-Rouh, C. Czerny, T. J. Vogl, and S. Zangos. Accuracy and speed of robotic assisted needle interventions using a modern cone beam computed tomography intervention suite: a phantom study. Eur. Radiol. 23(1):198–204, 2013.CrossRefPubMedGoogle Scholar
  46. 46.
    Silverman, S. G., K. Tuncali, D. F. Adams, R. D. Nawfel, K. H. Zou, and P. F. Judy. CT fluoroscopy-guided abdominal interventions: techniques, results, and radiation exposure. Radiology 212(3):673–681, 1999.CrossRefPubMedGoogle Scholar
  47. 47.
    Tselikas, L., J. Joskin, F. Roquet, G. Farouil, S. Dreuil, A. Hakimé, C. Teriitehau, A. Auperin, T. de Baere, and F. Deschamps. Percutaneous bone biopsies: comparison between flat-panel cone-beam CT and CT-scan guidance. Cardiovasc. Intervent. Radiol. 38(1):167–176, 2015.CrossRefPubMedGoogle Scholar
  48. 48.
    Wile, G. E., J. R. Leyendecker, K. A. Krehbiel, R. B. Dyer, and R. J. Zagoria. CT and MR imaging after imaging-guided thermal ablation of renal neoplasms. Radiographics 27(2):325–339, 2007.CrossRefPubMedGoogle Scholar
  49. 49.
    Wolf, F. J., D. J. Grand, J. T. Machan, T. A. DiPetrillo, W. W. Mayo-Smith, and D. E. Dupuy. Microwave ablation of lung malignancies: effectiveness, CT findings, and safety in 50 patients. Radiology 247(3):871–879, 2008.CrossRefPubMedGoogle Scholar
  50. 50.
    Wunschik, F., M. Georgi, and O. Pastyr. Stereotactic biopsy using computed tomography. J. Comput. Assist. Tomogr. 8(1):32–37, 1984.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringThe University of GeorgiaAthensUSA
  2. 2.Center for Interventional OncologyNational Institute of HealthBethesdaUSA
  3. 3.3T Technologies, LLCMariettaUSA

Personalised recommendations