Annals of Biomedical Engineering

, Volume 46, Issue 2, pp 365–374 | Cite as

Development of a Platform for Studying 3D Astrocyte Mechanobiology: Compression of Astrocytes in Collagen Gels

  • John J. E. Mulvihill
  • Julia Raykin
  • Eric J. Snider
  • Lisa A. Schildmeyer
  • Irsham Zaman
  • Manu O. Platt
  • Daniel J. Kelly
  • C. Ross EthierEmail author


Glaucoma is a common optic neuropathy characterized by retinal ganglion cell death. Elevated intraocular pressure (IOP), a key risk factor for glaucoma, leads to significant biomechanical deformation of optic nerve head (ONH) cells and tissues. ONH astrocytes respond to this deformation by transforming to a reactive, proliferative phenotype, which has been implicated in the progression of glaucomatous vision loss. However, little is known about the mechanisms of this transformation. In this study, we developed a 3D collagen gel culture system to mimic features of ONH deformation due to elevated IOP. Compressive loading of astrocyte-seeded collagen gels led to cell alignment perpendicular to the direction of strain, and increased astrocyte activation, as assayed by GFAP, vimentin, and s100β levels, as well as MMP activity. This proof-of-concept study shows that this system has potential for studying mechanisms of astrocyte mechanobiology as related to the pathogenesis of glaucoma. Further work is needed to establish the possible interplay of mechanical stimulation, matrix properties, and hypoxia on the observed response of astrocytes.


Glaucoma Astrocyte mechanobiology Optic nerve head 3D culture model Mechanical conditioning 



This work was supported by the Georgia Research Alliance, the Irish Research Council through the ELEVATE: Irish Research Council International Career Development Fellowship—co-funded by Marie Curie Actions, the National Space Biomedical Research Institute through NCC 9-58, and the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1148903.

Supplementary material

10439_2017_1967_MOESM1_ESM.pdf (1.9 mb)
Supplementary material 1 (PDF 1976 kb)


  1. 1.
    Albon, J., W. S. Karwatowski, N. Avery, D. L. Easty, and V. C. Duance. Changes in the collagenous matrix of the aging human lamina cribrosa. Br. J. Ophthalmol. 79:368–375, 1995.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Anderson, D. R. Collaborative normal tension glaucoma study. Curr. Opin. Ophthalmol. 14:86–90, 2003.CrossRefPubMedGoogle Scholar
  3. 3.
    Anderson, D. R., and A. Hendrickson. Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Investig. Ophthalmol. Vis. Sci. 13:771–783, 1974.Google Scholar
  4. 4.
    Balasubramanian, S., J. A. Packard, J. B. Leach, and E. M. Powell. Three-dimensional environment sustains morphological heterogeneity and promotes phenotypic progression during astrocyte development. Tissue Eng. Part A 22:885–898, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bell, B. J., E. Nauman, and S. L. Voytik-Harbin. Multiscale strain analysis of tissue equivalents using a custom-designed biaxial testing device. Biophys. J. 102:1303–1312, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Biran, R., M. D. Noble, and P. A. Tresco. Directed nerve outgrowth is enhanced by engineered glial substrates. Exp. Neurol. 184:141–152, 2003.CrossRefPubMedGoogle Scholar
  7. 7.
    Bott, K., Z. Upton, K. Schrobback, M. Ehrbar, J. A. Hubbell, M. P. Lutolf, and S. C. Rizzi. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials 31:8454–8464, 2010.CrossRefPubMedGoogle Scholar
  8. 8.
    Burgoyne, C. F., J. C. Downs, A. J. Bellezza, J.-K. F. Suh, and R. T. Hart. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog. Retin. Eye Res. 24:39–73, 2005.CrossRefPubMedGoogle Scholar
  9. 9.
    Chen, B., and M. O. Platt. Multiple× zymography captures stage-specific activity profiles of cathepsins K, L, and S in human breast, lung, and cervical cancer. J. Transl. Med. 9:109, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chong, R. S., and K. R. Martin. Glial cell interactions and glaucoma. Curr. Opin. Ophthalmol. 26:73–77, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Coudrillier, B., D. Geraldes, N. Vo, R. Atwood, C. Reinhard, I. Campbell, Y. Raji, J. Albon, R. Abel, and R. Ethier. Phase-contrast micro-computed tomography measurements of the intraocular pressure-induced deformation of the porcine lamina cribrosa. IEEE Trans. Med. Imaging 35:988–999, 2015.CrossRefPubMedGoogle Scholar
  12. 12.
    De Hoz, R., B. Rojas, A. I. Ramírez, J. J. Salazar, B. I. Gallego, A. Triviño, and J. M. Ramírez. Retinal macroglial responses in health and disease. Biomed. Res. Int. 2016:2954721, 2016.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Downs, J. C., C. F. Burgoyne, W. P. Seigfreid, J. F. Reynaud, N. G. Strouthidis, and V. Sallee. 24-hour IOP telemetry in the nonhuman primate: implant system performance and initial characterization of IOP at multiple timescales. Investig. Ophthalmol. Vis. Sci. 52:7365–7375, 2011.CrossRefGoogle Scholar
  14. 14.
    Downs, J. C., M. D. Roberts, and C. F. Burgoyne. Mechanical environment of the optic nerve head in glaucoma. Optom. Vis. Sci. 85:425–435, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    East, E., J. P. Golding, and J. B. Phillips. A versatile 3D culture model facilitates monitoring of astrocytes undergoing reactive gliosis. J. Tissue Eng. Regen. Med. 3:634–646, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ellis, E. F., J. S. McKinney, K. A. Willoughby, S. Liang, and J. T. Povlishock. A new model for rapid stretch-induced injury of cells in culture: characterization of the model using astrocytes. J. Neurotrauma 12:325–339, 1995.CrossRefPubMedGoogle Scholar
  17. 17.
    Exler, R. E., X. Guo, D. Chan, I. Livne-Bar, N. Vicic, J. G. Flanagan, and J. M. Sivak. Biomechanical insult switches PEA-15 activity to uncouple its anti-apoptotic function and promote erk mediated tissue remodeling. Exp. Cell Res. 340:283–294, 2016.CrossRefPubMedGoogle Scholar
  18. 18.
    Gillette, B. M., J. A. Jensen, M. Wang, J. Tchao, and S. K. Sia. Dynamic hydrogels: switching of 3D microenvironments using two-component naturally derived extracellular matrices. Adv. Mater. Weinh. 22:686–691, 2010.CrossRefGoogle Scholar
  19. 19.
    Heijl, A., M. C. Leske, B. Bengtsson, L. Hyman, B. Bengtsson, M. Hussein, and Early Manifest Glaucoma Trial Group. Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch. Ophthalmol. 120:1268–1279, 2002.CrossRefPubMedGoogle Scholar
  20. 20.
    Hernandez, M. R. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog. Retin. Eye Res. 19:297–321, 2000.CrossRefPubMedGoogle Scholar
  21. 21.
    Hernandez, M. R., H. Miao, and T. Lukas. Astrocytes in glaucomatous optic neuropathy. In: Glaucoma: An Open Window to Neurodegeneration and Neuroprotection, Amsterdam: Elsevier, 2008, pp. 353–373. Scholar
  22. 22.
    Jaworski, J., and C. M. Klapperich. Fibroblast remodeling activity at two- and three-dimensional collagen-glycosaminoglycan interfaces. Biomaterials 27:4212–4220, 2006.CrossRefPubMedGoogle Scholar
  23. 23.
    Johnson, E. C., and J. C. Morrison. Friend or foe? Resolving the impact of glial responses in glaucoma. J. Glaucoma 18:341–353, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lam, D. S. C., J. K. H. Chua, C. C. Y. Tham, and J. S. M. Lai. Efficacy and safety of immediate anterior chamber paracentesis in the treatment of acute primary angle-closure glaucoma: a pilot study. Ophthalmology 109:64–70, 2002.CrossRefPubMedGoogle Scholar
  25. 25.
    Lye-Barthel, M., D. Sun, and T. C. Jakobs. Morphology of astrocytes in a glaucomatous optic nerve. Invest. Ophthalmol. Vis. Sci. 54:909–917, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Marshak, D. R. S100 beta as a neurotrophic factor. Prog. Brain Res. 86:169–181, 1990.CrossRefPubMedGoogle Scholar
  27. 27.
    Morgan, J. E. Optic nerve head structure in glaucoma: astrocytes as mediators of axonal damage. Eye (Lond) 14(Pt 3B):437–444, 2000.CrossRefGoogle Scholar
  28. 28.
    Morrison, J. C., W. O. Cepurna, S. Tehrani, T. E. Choe, H. Jayaram, D. C. Lozano, B. Fortune, and E. C. Johnson. A period of controlled elevation of IOP (CEI) produces the specific gene expression responses and focal injury pattern of experimental rat glaucoma. Invest. Ophthalmol. Vis. Sci. 57:6700–6711, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Munemasa, Y., and Y. Kitaoka. Molecular mechanisms of retinal ganglion cell degeneration in glaucoma and future prospects for cell body and axonal protection. Front. Cell. Neurosci. 6:60, 2012.PubMedGoogle Scholar
  30. 30.
    Neufeld, A. H., and B. Liu. Glaucomatous optic neuropathy: when glia misbehave. Neuroscientist 9:485–495, 2003.CrossRefPubMedGoogle Scholar
  31. 31.
    Ng, C. P., B. Hinz, and M. A. Swartz. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell Sci. 118:4731–4739, 2005.CrossRefPubMedGoogle Scholar
  32. 32.
    Nguyen, A. H., Y. Wang, D. E. White, M. O. Platt, and T. C. McDevitt. MMP-mediated mesenchymal morphogenesis of pluripotent stem cell aggregates stimulated by gelatin methacrylate microparticle incorporation. Biomaterials 76:66–75, 2016.CrossRefPubMedGoogle Scholar
  33. 33.
    Orban, J. M., L. B. Wilson, J. A. Kofroth, M. S. El-Kurdi, T. M. Maul, and D. A. Vorp. Crosslinking of collagen gels by transglutaminase. J. Biomed. Mater. Res. A 68:756–762, 2004.CrossRefPubMedGoogle Scholar
  34. 34.
    Placone, A. L., P. M. McGuiggan, D. E. Bergles, H. Guerrero-Cazares, A. Quiñones-Hinojosa, and P. C. Searson. Human astrocytes develop physiological morphology and remain quiescent in a novel 3D matrix. Biomaterials 42:134–143, 2015.CrossRefPubMedGoogle Scholar
  35. 35.
    Quigley, H. A., and E. M. Addicks. Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Investig. Ophthalmol. Vis. Sci. 19:137–152, 1980.Google Scholar
  36. 36.
    Radany, E. H., M. Brenner, F. Besnard, V. Bigornia, J. M. Bishop, and C. F. Deschepper. Directed establishment of rat brain cell lines with the phenotypic characteristics of type 1 astrocytes. Proc. Natl. Acad. Sci. USA 89:6467–6471, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ridet, J. L., S. K. Malhotra, A. Privat, and F. H. Gage. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 20:570–577, 1997.CrossRefPubMedGoogle Scholar
  38. 38.
    Rogers, R. S., M. Dharsee, S. Ackloo, J. M. Sivak, and J. G. Flanagan. Proteomics analyses of human optic nerve head astrocytes following biomechanical strain. Mol. Cell. Proteom. 11:M111.012302, 2012.CrossRefGoogle Scholar
  39. 39.
    Schneider, M., and R. Fuchshofer. The role of astrocytes in optic nerve head fibrosis in glaucoma. Exp. Eye Res. 142:49–55, 2016.CrossRefPubMedGoogle Scholar
  40. 40.
    Seliktar, D., R. A. Black, R. P. Vito, and R. M. Nerem. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng. 28:351–362, 2000.CrossRefPubMedGoogle Scholar
  41. 41.
    Sigal, I. A., J. G. Flanagan, I. Tertinegg, and C. R. Ethier. Predicted extension, compression and shearing of optic nerve head tissues. Exp. Eye Res. 85:312–322, 2007.CrossRefPubMedGoogle Scholar
  42. 42.
    Simon, D. D., C. O. Horgan, and J. D. Humphrey. Mechanical restrictions on biological responses by adherent cells within collagen gels. J. Mech. Behav. Biomed. Mater. 14:216–226, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sofroniew, M. V., and H. V. Vinters. Astrocytes: biology and pathology. Acta Neuropathol. 119:7–35, 2010.CrossRefPubMedGoogle Scholar
  44. 44.
    Son, J. L., I. Soto, E. Oglesby, T. Lopez-Roca, M. E. Pease, H. A. Quigley, and N. Marsh-Armstrong. Glaucomatous optic nerve injury involves early astrocyte reactivity and late oligodendrocyte loss. Glia 58:780–789, 2010.PubMedGoogle Scholar
  45. 45.
    Sundararaghavan, H. G., G. A. Monteiro, N. A. Lapin, Y. J. Chabal, J. R. Miksan, and D. I. Shreiber. Genipin-induced changes in collagen gels: correlation of mechanical properties to fluorescence. J. Biomed. Mater. Res. A 87:308–320, 2008.CrossRefPubMedGoogle Scholar
  46. 46.
    Sung, K. E., X. Su, E. Berthier, C. Pehlke, A. Friedl, and D. J. Beebe. Understanding the impact of 2D and 3D fibroblast cultures on in vitro breast cancer models. PLoS ONE 8:e76373, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Tehrani, S., L. Davis, W. O. Cepurna, T. E. Choe, D. C. Lozano, A. Monfared, L. Cooper, J. Cheng, E. C. Johnson, and J. C. Morrison. Astrocyte structural and molecular response to elevated intraocular pressure occurs rapidly and precedes axonal tubulin rearrangement within the optic nerve head in a rat model. PLoS ONE 11:e0167364, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tehrani, S., E. C. Johnson, W. O. Cepurna, and J. C. Morrison. Astrocyte processes label for filamentous actin and reorient early within the optic nerve head in a rat glaucoma model. Investig. Ophthalmol. Vis. Sci. 55:6945–6952, 2014.CrossRefGoogle Scholar
  49. 49.
    Tham, Y.-C., X. Li, T. Y. Wong, H. A. Quigley, T. Aung, and C.-Y. Cheng. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081–2090, 2014.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  1. 1.Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory UniversityAtlantaUSA
  2. 2.Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College DublinDublinIreland
  3. 3.George W. Woodruff School of Mechanical Engineering, Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations