Advertisement

Engineering Analysis of Tricuspid Annular Dynamics in the Beating Ovine Heart

Abstract

Functional tricuspid regurgitation is a significant source of morbidity and mortality in the US. Furthermore, treatment of functional tricuspid regurgitation is suboptimal with significant recurrence rates, which may, at least in part, be due to our limited knowledge of the relationship between valvular shape and function. Here we study the dynamics of the healthy in vivo ovine tricuspid annulus to improve our understanding of normal annular deformations throughout the cardiac cycle. To this end, we determine both clinical as well as engineering metrics of in vivo annular dynamics based on sonomicrometry crystals surgically attached to the annulus. We confirm that the tricuspid annulus undergoes large dynamic changes in area, perimeter, height, and eccentricity throughout the cardiac cycle. This deformation may be described as asymmetric in-plane motion of the annulus with minor out-of-plane motion. In addition, we employ strain and curvature to provide mechanistic insight into the origin of this deformation. Specifically, we find that strain and curvature vary considerable across the annulus with highly localized minima and maxima resulting in aforementioned configurational changes throughout the cardiac cycle. It is our hope that these data provide valuable information for clinicians and engineers alike and ultimately help us improve treatment of functional tricuspid regurgitation.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1.

    Amini Khoiy, K., and R. Amini. On the biaxial mechanical response of porcine tricuspid valve leaflets. J. Biomech. Eng. 138:104504, 2016.

  2. 2.

    Amini Khoiy, K., D. Biswas, T. N. Decker, K. T. Asgarian, F. Loth, and R. Amini. Surface strains of porcine tricuspid valve septal leaflets measured in ex vivo beating hearts. J. Biomech. Eng. 138:111006, 2016.

  3. 3.

    Baillargeon, B., I. Costa, J. R. Leach, L. C. Lee, M. Genet, A. Toutain, J. F. Wenk, M. K. Rausch, N. Rebelo, G. Acevedo-Bolton, E. Kuhl, J. L. Navia, and J. M. Guccione. Human cardiac function simulator for the optimal design of a novel annuloplasty ring with a sub-valvular element for correction of ischemic mitral regurgitation. Cardiovasc. Eng. Technol. 6:105–116, 2015.

  4. 4.

    Basu, A., and Z. He. Annulus tension on the tricuspid valve: an in-vitro study. Cardiovasc. Eng. Technol. 7:270–279, 2016.

  5. 5.

    Bothe, W., E. Kuhl, J. P. E. Kvitting, M. K. Rausch, S. Göktepe, J. C. Swanson, S. Farahmandia, N. B. Ingels, and D. C. Miller. Rigid, complete annuloplasty rings increase anterior mitral leaflet strains in the normal beating ovine heart. Circulation 124:S81–S96, 2011.

  6. 6.

    Bothe, W., M. K. Rausch, J. P. E. Kvitting, D. K. Echtner, M. Walther, N. B. Ingels, E. Kuhl, and D. Craig Miller. How do annuloplasty rings affect mitral annular strains in the normal beating ovine heart? Circulation 126:S231–S238, 2012.

  7. 7.

    Chan, V., I. G. Burwash, B. K. Lam, T. Auyeung, A. Tran, T. G. Mesana, and M. Ruel. Clinical and echocardiographic impact of functional tricuspid regurgitation repair at the time of mitral valve replacement. Ann. Thorac. Surg. 88:1209–1215, 2009.

  8. 8.

    Eckert, C. E., B. Zubiate, M. Vergnat, J. H. Gorman, R. C. Gorman, and M. S. Sacks. In vivo dynamic deformation of the mitral valve annulus. Ann. Biomed. Eng. 37:1757–1771, 2009.

  9. 9.

    Fawzy, H., K. Fukamachi, C. D. Mazer, A. Harrington, D. Latter, D. Bonneau, and L. Errett. Complete mapping of the tricuspid valve apparatus using three-dimensional sonomicrometry. J. Thorac. Cardiovasc. Surg. 141:1037–1043, 2011.

  10. 10.

    Fukuda, S., A. M. Gillinov, P. M. McCarthy, W. J. Stewart, J. M. Song, T. Kihara, M. Daimon, M. S. Shin, J. D. Thomas, and T. Shiota. Determinants of recurrent or residual functional tricuspid regurgitation after tricuspid annuloplasty. Circulation 114:I-582–I-587, 2006.

  11. 11.

    Fukuda, S., G. Saracino, Y. Matsumura, M. Daimon, H. Tran, N. L. Greenberg, T. Hozumi, J. Yoshikawa, J. D. Thomas, and T. Shiota. Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation a real-time, 3-dimensional echocardiographic study. Circulation 2006. https://doiorg.10.1161/CIRCULATIONAHA.105.000257.

  12. 12.

    Gorman, J. H., R. C. Gorman, B. M. Jackson, Y. Enomoto, M. G. St. John-Sutton, and L. H. Edmunds. Annuloplasty ring selection for chronic ischemic mitral regurgitation: lessons from the ovine model. Ann. Thorac. Surg. 76:1556–1563, 2003.

  13. 13.

    Gorman, J. H., R. C. Gorman, T. Plappert, B. M. Jackson, Y. Hiramatsu, M. G. St. John-Sutton, and L. H. Edmunds, Jr. Infarct size and location determine development of mitral regurgitation in the sheep model. J. Thorac. Cardiovasc. Surg. 115:615–622, 1998.

  14. 14.

    Hiro, M. E., J. Jouan, M. R. Pagel, E. Lansac, K. H. Lim, H.-S. Lim, and C. M. Duran. Sonometric study of the normal tricuspid valve annulus in sheep. J. Heart Valve Dis. 13:452–460, 2004.

  15. 15.

    Jouan, J., M. R. Pagel, M. E. Hiro, K. H. Lim, E. Lansac, and C. M. G. Duran. Further information from a sonometric study of the normal tricuspid valve annulus in sheep: geometric changes during the cardiac cycle. J. Heart Valve Dis. 16:511–518, 2007.

  16. 16.

    Leng, S., M. Jiang, X. D. Zhao, J. C. Allen, G. S. Kassab, R. Z. Ouyang, J. Le Tan, B. He, R. S. Tan, and L. Zhong. Three-dimensional tricuspid annular motion analysis from cardiac magnetic resonance feature-tracking. Ann. Biomed. Eng. 44:3522–3538, 2016.

  17. 17.

    Malinowski, M., A. G. Proudfoot, D. Langholz, L. Eberhart, M. Brown, H. Schubert, J. Wodarek, and T. A. Timek. Large animal model of functional tricuspid regurgitation in pacing induced end-stage heart failure. Interact. Cardiovasc. Thorac. Surg. 24:905–910, 2017.

  18. 18.

    Malinowski, M., P. Wilton, A. Khaghani, M. Brown, D. Langholz, V. Hooker, L. Eberhart, R. L. Hooker, and T. A. Timek. The effect of acute mechanical left ventricular unloading on ovine tricuspid annular size and geometry. Interact. Cardiovasc. Thorac. Surg. 23:391–396, 2016.

  19. 19.

    Malinowski, M., P. Wilton, A. Khaghani, D. Langholz, V. Hooker, L. Eberhart, R. L. Hooker, and T. A. Timek. The effect of pulmonary hypertension on ovine tricuspid annular dynamics. Eur. J. Cardio-thorac. Surg. 49:40–45, 2016.

  20. 20.

    Mutlak, D., D. Aronson, J. Lessick, S. A. Reisner, S. Dabbah, and Y. Agmon. Functional tricuspid regurgitation in patients with pulmonary hypertension: is pulmonary artery pressure the only determinant of regurgitation severity? Chest 135:115–121, 2009.

  21. 21.

    Nishi, H., K. Toda, S. Miyagawa, Y. Yoshikawa, S. Fukushima, M. Kawamura, D. Yoshioka, T. Saito, T. Ueno, T. Kuratani, and Y. Sawa. Tricuspid annular dynamics before and after tricuspid annuloplasty- three-dimensional transesophageal echocardiography. Circ. J. 79:873–879, 2015.

  22. 22.

    Onoda, K., F. Yasuda, M. Takao, T. Shimono, K. Tanaka, H. Shimpo, and I. Yada. Long-term follow-up after Carpentier-Edwards ring annuloplasty for tricuspid regurgitation. Ann. Thorac. Surg. 70:796–799, 2000.

  23. 23.

    Oren, M., O. Oren, A. Feldman, L. Bloch, and Y. Turgeman. Permanent lone atrial fibrillation and atrioventricular valve regurgitation: may the former lead to the latter? J. Heart Valve Dis. 23:759–764, 2014.

  24. 24.

    Rausch, M. K., W. Bothe, J. P. E. Kvitting, S. Göktepe, D. Craig Miller, and E. Kuhl. In vivo dynamic strains of the ovine anterior mitral valve leaflet. J. Biomech. 44:1149–1157, 2011.

  25. 25.

    Rausch, M. K., W. Bothe, J. P. E. Kvitting, J. C. Swanson, N. B. Ingels, D. C. Miller, and E. Kuhl. Characterization of mitral valve annular dynamics in the beating heart. Ann. Biomed. Eng. 39:1690–1702, 2011.

  26. 26.

    Rausch, M. K., W. Bothe, J. P. E. Kvitting, J. C. Swanson, D. C. Miller, and E. Kuhl. Mitral valve annuloplasty: a quantitative clinical and mechanical comparison of different annuloplasty devices. Ann. Biomed. Eng. 40:750–761, 2012.

  27. 27.

    Rausch, M. K., F. A. Tibayan, N. B. Ingels, D. C. Miller, and E. Kuhl. Mechanics of the mitral annulus in chronic ischemic cardiomyopathy. Ann. Biomed. Eng. 41:2171–2180, 2013.

  28. 28.

    Rausch, M. K., A. M. Zöllner, M. Genet, B. Baillargeon, W. Bothe, and E. Kuhl. A virtual sizing tool for mitral valve annuloplasty. Int. J. Numer. Method Biomed. Eng. 2017. https://doiorg.10.1002/cnm.2788.

  29. 29.

    Ring, L., B. S. Rana, A. Kydd, J. Boyd, K. Parker, and R. A. Rusk. Dynamics of the tricuspid valve annulus in normal and dilated right hearts: a three-dimensional transoesophageal echocardiography study. Eur. Heart J. Cardiovasc. Imaging 13:756–762, 2012.

  30. 30.

    Saeed, D., T. Kidambi, S. Shalli, B. Lapin, S. C. Malaisrie, R. Lee, W. G. Cotts, and E. C. McGee. Tricuspid valve repair with left ventricular assist device implantation: is it warranted? J. Heart Lung Transplant. 30:530–535, 2011.

  31. 31.

    Salgo, I. S., J. H. Gorman, R. C. Gorman, B. M. Jackson, F. W. Bowen, T. Plappert, M. G. St John Sutton, and L. H. Edmunds. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106:711–717, 2002.

  32. 32.

    Smith, D. Annulus Tension in the Tricuspid Valve: The Effects of Annulus Dilation and Papillary Muscle Movement. Thesis. 2012.

  33. 33.

    Spinner, E. M., D. Buice, C. H. Yap, and A. P. Yoganathan. The effects of a three-dimensional, saddle-shaped annulus on anterior and posterior leaflet stretch and regurgitation of the tricuspid valve. Ann. Biomed. Eng. 40:996–1005, 2012.

  34. 34.

    Spinner, E. M., S. Lerakis, J. Higginson, M. Pernetz, S. Howell, E. Veledar, and A. P. Yoganathan. Erratum: correlates of tricuspid regurgitation as determined by 3d echocardiography: pulmonary arterial pressure, ventricle geometry, annular dilatation, and papillary muscle displacement. Circulation 5:43–45, 2012.

  35. 35.

    Tei, C., J. P. Pilgrim, P. M. Shah, J. A. Ormiston, and M. Wong. The tricuspid valve annulus: study of size and motion in normal subjects and in patients with tricuspid regurgitation. Circulation 66:665–672, 1982.

  36. 36.

    Ton-Nu, T.-T., R. A. Levine, M. D. Handschumacher, D. J. Dorer, C. Yosefy, D. Fan, L. Hua, L. Jiang, and J. Hung. Geometric determinants of functional tricuspid regurgitation. Circulation 114:143–149, 2006.

  37. 37.

    Zhou, X., Y. Otsuji, S. Yoshifuku, T. Yuasa, H. Zhang, K. Takasaki, K. Matsukida, A. Kisanuki, S. Minagoe, and C. Tei. Impact of atrial fibrillation on tricuspid and mitral annular dilatation and valvular regurgitation. Circ. J. 66:913–916, 2002.

Download references

Acknowledgments

This study was supported by an internal Grant from the Meijer Heart and Vascular Institute at Spectrum Health.

Conflict of interest

None of the authors have conflict of interest to report.

Author information

Correspondence to Manuel K. Rausch.

Additional information

Associate Editor Ender A. Finol oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 3 (MP4 3433 kb)

Supplementary material 1 (MP4 3319 kb)

Supplementary material 2 (MP4 3005 kb)

Supplementary material 3 (MP4 3433 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rausch, M.K., Malinowski, M., Wilton, P. et al. Engineering Analysis of Tricuspid Annular Dynamics in the Beating Ovine Heart. Ann Biomed Eng 46, 443–451 (2018). https://doi.org/10.1007/s10439-017-1961-y

Download citation

Keywords

  • Functional tricuspid regurgitation
  • Strain
  • Curvature
  • Sonomicrometry
  • Splines