Blood Pump Design Variations and Their Influence on Hydraulic Performance and Indicators of Hemocompatibility

  • L. Wiegmann
  • S. Boës
  • D. de Zélicourt
  • B. Thamsen
  • M. Schmid Daners
  • M. Meboldt
  • V. Kurtcuoglu
Article
  • 188 Downloads

Abstract

Patients with ventricular assist devices still suffer from high rates of adverse events. Since many of these complications are linked to the flow field within the pump, optimization of the device geometry is essential. To investigate design aspects that influence the flow field, we developed a centrifugal blood pump using industrial guidelines. We then systematically varied selected design parameters and investigated their effects on hemodynamics and hydraulic performance using computational fluid dynamics. We analysed the flow fields based on Eulerian and Lagrangian features, shear stress histograms and six indicators of hemocompatibility. Within the investigated range of clearance gaps (50500 µm), number of impeller blades (4–7), and semi-open versus closed shroud design, we found association of potentially damaging shear stress conditions with larger gap size and more blades. The extent of stagnation and recirculation zones was reduced with lower numbers of blades and a semi-open impeller, but it was increased with smaller clearance. The Lagrangian hemolysis index, a metric commonly applied to estimate blood damage, showed a negative correlation with hydraulic efficiency and no correlation with the Eulerian threshold-based metric.

Keywords

Computational fluid dynamics Ventricular assist device Centrifugal blood pump Impeller design Blood damage Thrombosis Hemolysis 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support provided by the Swiss National Science Foundation through Grant 200021_147193 CINDY, the Marie Heim-Vögtlin fellowship PMPDP2_151255, NCCR Kidney.CH and the Stavros Niarchos Foundation. This work is part of the Zurich Heart project under the umbrella of University Medicine Zurich.

Supplementary material

10439_2017_1951_MOESM1_ESM.pdf (3 mb)
Supplementary material 1 (PDF 3108 kb)

References

  1. 1.
    Antaki, J. F., C. G. Diao, F. J. Shu, J. C. Wu, R. Zhao, and M. V. Kameneva. Microhaemodynamics within the blade tip clearance of a centrifugal turbodynamic blood pump. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 222:573–581, 2008.CrossRefGoogle Scholar
  2. 2.
    Arvand, A., N. Hahn, M. Hormes, M. Akdis, M. Martin, and H. Reul. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics. Artif. Organs 28:892–898, 2004.CrossRefPubMedGoogle Scholar
  3. 3.
    Bludszuweit, C. Three dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif. Organs 19:590–596, 1995.CrossRefPubMedGoogle Scholar
  4. 4.
    Bluestein, D., K. B. Chandran, and K. B. Manning. Towards non-thrombogenic performance of blood recirculating devices. Ann. Biomed. Eng. 38:1236–1256, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Boës, S., G. Ochsner, R. Amacher, A. Petrou, M. Meboldt, and M. Schmid Daners. Control of the fluid viscosity in a mock circulation. Artif. Organs 1:10, 2017.Google Scholar
  6. 6.
    Chan, W. K., Y. W. Wong, Y. Ding, L. P. Chua, and S. C. M. Yu. Numerical investigation of the effect of blade geometry on blood trauma in a centrifugal blood pump. Artif. Organs 26:785–793, 2002.CrossRefPubMedGoogle Scholar
  7. 7.
    Dewitz, T. S., T. C. Hung, R. R. Martin, and L. V. McIntire. Mechanical trauma in leukocytes. J. Lab. Clin. Med. 90:728–736, 1977.PubMedGoogle Scholar
  8. 8.
    Fraser, K. H., M. E. Taskin, B. P. Griffith, and Z. J. Wu. The use of computational fluid dynamics in the development of ventricular assist devices. Med. Eng. Phys. 33:263–280, 2011.CrossRefPubMedGoogle Scholar
  9. 9.
    Fraser, K. H., T. Zhang, M. E. Taskin, B. P. Griffith, and Z. J. Wu. A Quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. J. Biomech. Eng. 134:081002, 2012.CrossRefPubMedGoogle Scholar
  10. 10.
    Garon, A., and M.-I. Farinas. Fast three-dimensional numerical hemolysis approximation. Artif. Organs 28:1016–1025, 2004.CrossRefPubMedGoogle Scholar
  11. 11.
    Graefe, R., A. Henseler, and U. Steinseifer. Multivariate assessment of the effect of pump design and pump gap design parameters on blood trauma. Artif. Organs 40:568–576, 2016.CrossRefPubMedGoogle Scholar
  12. 12.
    Gülich, J. F. Centrifugal Pumps. Berlin Heidelberg: Springer, 2010. doi:10.1017/CBO9781107415324.004.CrossRefGoogle Scholar
  13. 13.
    Hellums, J. D. 1993 Whitaker lecture: biorheology in thrombosis research. Ann. Biomed. Eng. 22:445–455, 1994.CrossRefPubMedGoogle Scholar
  14. 14.
    Heuser, G., and R. Opitz. A Couette viscometer for short time shearing of blood. Biorheology 17:17–24, 1980.CrossRefPubMedGoogle Scholar
  15. 15.
    Hochareon, P., K. B. Manning, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Correlation of in vivo clot deposition with the flow characteristics in the 50 cc Penn State artificial heart: a preliminary study. ASAIO J. 50:537–542, 2004.CrossRefPubMedGoogle Scholar
  16. 16.
    Kim, N. J., C. Diao, K. H. Ahn, S. J. Lee, M. V. Kameneva, and J. F. Antaki. Parametric study of blade tip clearance, flow rate, and impeller speed on blood damage in rotary blood pump. Artif. Organs 33:468–474, 2009.CrossRefPubMedGoogle Scholar
  17. 17.
    Kirklin, J. K., D. C. Naftel, F. D. Pagani, R. L. Kormos, L. W. Stevenson, E. D. Blume, S. L. Myers, M. A. Miller, J. T. Baldwin, and J. B. Young. Seventh INTERMACS annual report: 15,000 patients and counting. J. Hear. Lung Transplant. 34:1495–1504, 2015.CrossRefGoogle Scholar
  18. 18.
    Korakianitis, T., M. A. Rezaienia, G. M. Paul, A. Rahideh, M. T. Rothman, and S. Mozafari. Optimization of centrifugal pump characteristic dimensions for mechanical circulatory support devices. ASAIO J. 62:545–551, 2016.CrossRefPubMedGoogle Scholar
  19. 19.
    Krabatsch, T., J. D. Schmitto, Y. Pya, D. Zimpfer, J. Garbade, V. Rao, M. Morshuis, S. Marasco, F. Beyersdorf, P. Sood, L. Damme, and I. Netuka. Heartmate 3 fully magnetically levitated left ventricular assist device for the treatment of advanced heart failure-1 year results from the CE mark trial. J. Hear. Lung Transplant. 35:S9, 2016.CrossRefGoogle Scholar
  20. 20.
    Merrill, E. W. Rheology of blood. Physiol. Rev. 49:836–886, 1969.Google Scholar
  21. 21.
    Morbiducci, U., R. Ponzini, M. Nobili, D. Massai, F. M. Montevecchi, D. Bluestein, and A. Redaelli. Blood damage safety of prosthetic heart valves. Shear-induced platelet activation and local flow dynamics: a fluid-structure interaction approach. J. Biomech. 42:1952–1960, 2009.CrossRefPubMedGoogle Scholar
  22. 22.
    Mozafari, S., M. A. Rezaienia, G. M. Paul, M. T. Rothman, P. Wen, and T. Korakianitis. The effect of geometry on the efficiency and hemolysis of centrifugal implantable blood pumps. ASAIO J. 63:53–59, 2017.CrossRefPubMedGoogle Scholar
  23. 23.
    Nascimbene, A., S. Neelamegham, O. H. Frazier, J. L. Moake, and J. Dong. Acquired von Willebrand syndrome associated with left ventricular assist device. Blood 127:3133–3142, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nobili, M., U. Morbiducci, R. Ponzini, C. Del Gaudio, A. Balducci, M. Grigioni, F. Maria Montevecchi, and A. Redaelli. Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid-structure interaction approach. J. Biomech. 41:2539–2550, 2008.CrossRefPubMedGoogle Scholar
  25. 25.
    Ochsner, G., R. Amacher, A. Amstutz, A. Plass, M. Schmid Daners, H. Tevaearai, S. Vandenberghe, M. J. Wilhelm, and L. Guzzella. A novel interface for hybrid mock circulations to evaluate ventricular assist devices. IEEE Trans. Biomed. Eng. 60:507–516, 2013.CrossRefPubMedGoogle Scholar
  26. 26.
    Schmitto, J. D., J. S. Hanke, S. V. Rojas, M. Avsar, and A. Haverich. First implantation in man of a new magnetically levitated left ventricular assist device (HeartMate III). J. Hear. Lung Transplant. 34:858–860, 2015.CrossRefGoogle Scholar
  27. 27.
    Taskin, M. E., K. H. Fraser, T. Zhang, C. Wu, B. P. Griffith, and Z. J. Wu. Evaluation of Eulerian and Lagrangian models for hemolysis estimation. ASAIO J. 58:363–372, 2012.CrossRefPubMedGoogle Scholar
  28. 28.
    Thamsen, B., B. Blümel, J. Schaller, C. O. Paschereit, K. Affeld, L. Goubergrits, and U. Kertzscher. Numerical analysis of blood damage potential of the HeartMate II and HeartWare HVAD Rotary blood pumps. Artif. Organs 39:651–659, 2015.CrossRefPubMedGoogle Scholar
  29. 29.
    Wu, J., J. F. Antaki, J. Verkaik, S. Snyder, and M. Ricci. Computational fluid dynamics-based design optimization for an implantable miniature Maglev pediatric ventricular assist device. J. Fluids Eng. 134:041101, 2012.CrossRefGoogle Scholar
  30. 30.
    Wu, J., J. F. Antaki, W. R. Wagner, T. A. Snyder, B. W. Paden, and H. S. Borovetz. Elimination of adverse leakage flow in a miniature pediatric centrifugal blood pump by computational fluid dynamics-based design optimization. ASAIO J. 51:636–643, 2005.CrossRefPubMedGoogle Scholar
  31. 31.
    Wu, J., B. E. Paden, H. S. Borovetz, and J. F. Antaki. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device. Artif. Organs 34:402–411, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wu, J., K. Shimmei, K. Tani, K. Niikura, and J. Sato. CFD-based design optimization for hydro turbines. J. Fluids Eng. 129:159–168, 2007.CrossRefGoogle Scholar
  33. 33.
    Yu, H., G. Janiga, and D. Thévenin. Computational fluid dynamics-based design optimization method for archimedes screw blood pumps. Artif. Organs 40:341–352, 2016.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • L. Wiegmann
    • 1
  • S. Boës
    • 2
  • D. de Zélicourt
    • 1
    • 3
  • B. Thamsen
    • 2
  • M. Schmid Daners
    • 2
  • M. Meboldt
    • 2
  • V. Kurtcuoglu
    • 1
    • 3
    • 4
    • 5
  1. 1.The Interface Group, Institute of PhysiologyUniversity of ZurichZurichSwitzerland
  2. 2.Product Development Group Zurich, Department of Mechanical and Process EngineeringETH ZurichZurichSwitzerland
  3. 3.National Center of Competence in Research, Kidney.CHZurichSwitzerland
  4. 4.Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
  5. 5.Neuroscience Center ZurichUniversity of ZurichZurichSwitzerland

Personalised recommendations