Advertisement

Annals of Biomedical Engineering

, Volume 46, Issue 1, pp 159–170 | Cite as

Should We Ignore What We Cannot Measure? How Non-Uniform Stretch, Non-Uniform Wall Thickness and Minor Side Branches Affect Computational Aortic Biomechanics in Mice

  • Mauro FerraroEmail author
  • Bram Trachet
  • Lydia Aslanidou
  • Heleen Fehervary
  • Patrick Segers
  • Nikolaos Stergiopulos
Article

Abstract

In order to advance the state-of-the-art in computational aortic biomechanics, we investigated the influence of (i) a non-uniform wall thickness, (ii) minor aortic side branches and (iii) a non-uniform axial stretch distribution on the location of predicted hotspots of principal strain in a mouse model for dissecting aneurysms. After 3 days of angiotensin II infusion, a murine abdominal aorta was scanned in vivo with contrast-enhanced micro-CT. The animal was subsequently sacrificed and its aorta was scanned ex vivo with phase-contrast X-ray tomographic microscopy (PCXTM). An automatic morphing framework was developed to map the non-pressurized, non-stretched PCXTM geometry onto the pressurized, stretched micro-CT geometry. The output of the morphing model was a structural FEM simulation where the output strain distribution represents an estimation of the wall deformation, not only due to the pressurization, but also due to the local axial stretch field. The morphing model also included minor branches and a mouse-specific wall thickness. A sensitivity study was then performed to assess the influence of each of these novel features on the outcome of the simulations. The results were supported by comparing the computed hotspots of principal strain to hotspots of early vascular damage as detected on PCXTM. Non-uniform axial stretch, non-uniform wall thickness and minor subcostal arteries significantly alter the locations of calculated hotspots of maximal principal strain. Even if experimental data on these features are often not available in clinical practice, one should be aware of the important implications that simplifications in the model might have on the final simulated result.

Keywords

Mouse models Biomechanics Synchrotron imaging 

Supplementary material

10439_2017_1945_MOESM1_ESM.pdf (343 kb)
Supplementary material 1 (PDF 342 kb)
10439_2017_1945_MOESM2_ESM.m (11 kb)
Supplementary material 2 (M File 12 kb)
10439_2017_1945_MOESM3_ESM.m (1 kb)
Supplementary material 3 (M File 2 kb)
10439_2017_1945_MOESM4_ESM.m (5 kb)
Supplementary material 4 (M File 6 kb)

References

  1. 1.
    Antiga, L., and D. A. Steinman. Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans. Med. Imaging 23(6):704–713, 2004.CrossRefPubMedGoogle Scholar
  2. 2.
    Antiga, L., M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, and D. A. Steinman. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46(11):1097, 2008.CrossRefPubMedGoogle Scholar
  3. 3.
    Avril, S., P. Badel, M. Gabr, M. A. Sutton, and S. M. Lessner. Biomechanics of porcine renal arteries and role of axial stretch. J. Biomech. Eng. 135(8):081007, 2013.CrossRefGoogle Scholar
  4. 4.
    Bersi, M., J. Ferruzzi, J. Eberth, R. Gleason, Jr., and J. Humphrey. Consistent biomechanical phenotyping of common carotid arteries from seven genetic, pharmacological, and surgical mouse models. Ann. Biomed. Eng. 42(6):1207–1223, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bols, J., L. Taelman, G. De Santis, J. Degroote, B. Verhegghe, P. Segers, and J. Vierendeels. Unstructured hexahedral mesh generation of complex vascular trees using a multi-block grid-based approach. Comput. Methods Biomech. Biomed. Eng. 19(6):663–672, 2016.CrossRefGoogle Scholar
  6. 6.
    Bond, A. R., C.-W. Ni, H. Jo, and P. D. Weinberg. Intimal cushions and endothelial nuclear elongation around mouse aortic branches and their spatial correspondence with patterns of lipid deposition. Am. J. Physiol. Heart Circ. Physiol. 298(2):H536–H544, 2010.CrossRefPubMedGoogle Scholar
  7. 7.
    Collins, M., M. Bersi, E. Wilson, and J. Humphrey. Mechanical properties of suprarenal and infrarenal abdominal aorta: implications for mouse models of aneurysms. Med. Eng. Phys. 33(10):1262–1269, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Conlisk, N., A. J. Geers, O. M. McBride, D. E. Newby, and P. R. Hoskins. Patient-specific modelling of abdominal aortic aneurysms: the influence of wall thickness on predicted clinical outcomes. Med. Eng. Phys. 38(6):526–537, 2016.CrossRefPubMedGoogle Scholar
  9. 9.
    Daugherty, A., and L. A. Cassis. Mouse models of abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 24(3):429–434, 2004.CrossRefPubMedGoogle Scholar
  10. 10.
    Daugherty, A., M. W. Manning, and L. A. Cassis. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J. Clin. Investig. 105(11):1605–1612, 2000.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dua, M. M., and R. L. Dalman. Hemodynamic influences on abdominal aortic aneurysm disease: application of biomechanics to aneurysm pathophysiology. Vasc. Pharmacol. 53(1):11–21, 2010.CrossRefGoogle Scholar
  12. 12.
    Feintuch, A., P. Ruengsakulrach, A. Lin, J. Zhang, Y.-Q. Zhou, J. Bishop, et al. Hemodynamics in the mouse aortic arch as assessed by MRI, ultrasound, and numerical modeling. Am. J. Physiol. Heart Circ. Physiol. 292(2):H884–H892, 2007.CrossRefPubMedGoogle Scholar
  13. 13.
    Figueroa, C. A., S. Baek, C. A. Taylor, and J. D. Humphrey. A computational framework for fluid–solid-growth modeling in cardiovascular simulations. Comput. Methods Appl. Mech. Eng. 198(45):3583–3602, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Friedman, J. H., J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. 3(3):209–226, 1977.CrossRefGoogle Scholar
  15. 15.
    Gamble, G., B. Beaumont, H. Smith, J. Zorn, G. Sanders, M. Merrilees, and N. Sharpe. B-mode ultrasound images of the carotid artery wall: correlation of ultrasound with histological measurements. Atherosclerosis 102(2):163–173, 1993.CrossRefPubMedGoogle Scholar
  16. 16.
    Gasser, T. C., M. Auer, F. Labruto, J. Swedenborg, and J. Roy. Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur. J. Vasc. Endovasc. Surg. 40(2):176–185, 2010.CrossRefPubMedGoogle Scholar
  17. 17.
    Guo, X., and G. S. Kassab. Variation of mechanical properties along the length of the aorta in C57bl/6 mice. Am. J. Physiol. Heart Circ. Physiol. 285(6):H2614–H2622, 2003.CrossRefPubMedGoogle Scholar
  18. 18.
    Haker, S., S. Angenent, A. Tannenbaurn, and R. Kikinis. Nondistorting flattening maps and the 3-D visualization of colon CT images. IEEE Trans. Med. Imaging 19(7):665–670, 2000.CrossRefPubMedGoogle Scholar
  19. 19.
    Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Cardiovasc. Soft Tissue Mech. 61:1–48, 2001.Google Scholar
  20. 20.
    Humphrey, J. D., and G. A. Holzapfel. Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J. Biomech. 45(5):805–814, 2012.CrossRefPubMedGoogle Scholar
  21. 21.
    Humphrey, J., J. Eberth, W. Dye, and R. Gleason. Fundamental role of axial stress in compensatory adaptations by arteries. J. Biomech. 42(1):1–8, 2009.CrossRefPubMedGoogle Scholar
  22. 22.
    Kim, J., and S. Baek. Circumferential variations of mechanical behavior of the porcine thoracic aorta during the inflation test. J. Biomech. 44(10):1941–1947, 2011.CrossRefPubMedGoogle Scholar
  23. 23.
    Nakashima, Y., A. S. Plump, E. W. Raines, J. L. Breslow, and R. Ross. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler. Thromb. Vasc. Biol. 14(1):133–140, 1994.CrossRefGoogle Scholar
  24. 24.
    Raaz, U., A. M. Zöllner, I. N. Schellinger, R. Toh, F. Nakagami, M. Brandt, et al. Segmental aortic stiffening contributes to experimental abdominal aortic aneurysm development. Circulation 2015. doi: 10.1161/CIRCULATIONAHA.114.012377.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Raut, S. S., A. Jana, V. De Oliveira, S. C. Muluk, and E. A. Finol. The importance of patient-specific regionally varying wall thickness in abdominal aortic aneurysm biomechanics. J. Biomech. Eng. 135(8):081010, 2013.CrossRefGoogle Scholar
  26. 26.
    Reymond, P., P. Crosetto, S. Deparis, A. Quarteroni, and N. Stergiopulos. Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Med. Eng. Phys. 35(6):784–791, 2013.CrossRefPubMedGoogle Scholar
  27. 27.
    Saraff, K., F. Babamusta, L. A. Cassis, and A. Daugherty. Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 23(9):1621–1626, 2003.CrossRefPubMedGoogle Scholar
  28. 28.
    Shang, E. K., D. P. Nathan, E. Y. Woo, R. M. Fairman, G. J. Wang, R. C. Gorman, and B. M. Jackson. Local wall thickness in finite element models improves prediction of abdominal aortic aneurysm growth. J. Vasc. Surg. 61(1):217–223, 2015.CrossRefPubMedGoogle Scholar
  29. 29.
    Stampanoni, M., G. Borchert, P. Wyss, R. Abela, B. Patterson, S. Hunt, and P. Ruegsegger. High resolution X-ray detector for synchrotron-based microtomography. Nucl. Instrum. Methods Phys. Res. A 491(1):291–301, 2002.CrossRefGoogle Scholar
  30. 30.
    Trachet, B., M. Renard, G. De Santis, S. Staelens, J. De Backer, L. Antiga, and P. Segers. An integrated framework to quantitatively link mouse-specific hemodynamics to aneurysm formation in angiotensin II-infused ApoE−/− mice. Ann. Biomed. Eng. 39(9):2430–2444, 2011.CrossRefPubMedGoogle Scholar
  31. 31.
    Trachet, B., J. Bols, J. Degroote, B. Verhegghe, N. Stergiopulos, J. Vierendeels, and P. Segers. An animal-specific FSI model of the abdominal aorta in anesthetized mice. Ann. Biomed. Eng. 43(6):1298–1309, 2015.CrossRefPubMedGoogle Scholar
  32. 32.
    Trachet, B., R. A. Fraga-Silva, A. Piersigilli, A. Tedgui, J. Sordet-Dessimoz, A. Astolfo, and N. Stergiopulos. Dissecting abdominal aortic aneurysm in Ang II-infused mice: suprarenal branch ruptures and apparent luminal dilatation. Cardiovasc. Res. 105(2):213–222, 2015.CrossRefPubMedGoogle Scholar
  33. 33.
    Trachet, B., A. Piersigilli, L. Aslanidou, R. A. Fraga-Silva, J. Sordet-Dessimoz, P. Villanueva-Perez, and P. Segers. Angiotensin II infusion into ApoE−/− mice: a model for aortic dissection rather than abdominal aortic aneurysm? Cardiovasc. Res. 113(10):1230–1242, 2017.CrossRefPubMedGoogle Scholar
  34. 34.
    Vincent, P., A. Plata, A. Hunt, P. Weinberg, and S. Sherwin. Blood flow in the rabbit aortic arch and descending thoracic aorta. J. R. Soc. Interface 8(65):1708–1719, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Vorp, D. A. Biomechanics of abdominal aortic aneurysm. J. Biomech. 40(9):1887–1902, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Voß, S., S. Glaßer, T. Hoffmann, O. Beuing, S. Weigand, K. Jachau, et al. Fluid–structure simulations of a ruptured intracranial aneurysm: constant versus patient-specific wall thickness. Comput. Math. Methods Med. 2016. doi: 10.1155/2016/9854539.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Wehrl, H. F., I. Bezrukov, S. Wiehr, M. Lehnhoff, K. Fuchs, J. G. Mannheim, and B. J. Pichler. Assessment of murine brain tissue shrinkage caused by different histological fixatives using magnetic resonance and computed tomography imaging. Histol. Histopathol. 30(5):601–613, 2015.PubMedGoogle Scholar
  38. 38.
    Wilson, J., S. Baek, and J. Humphrey. Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. J. R. Soc. Interface 2012. doi: 10.1098/rsif.2012.0097.Google Scholar
  39. 39.
    Wilson, J. S., M. R. Bersi, G. Li, and J. D. Humphrey. Correlation of wall microstructure and heterogeneous distributions of strain in evolving murine abdominal aortic aneurysms. Cardiovasc. Eng. Technol. 8(2):1–12, 2017.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  1. 1.Institute of BioengineeringEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.IBiTech - bioMMedaGhent UniversityGhentBelgium
  3. 3.Biomechanics SectionUniversity of LeuvenLouvainBelgium

Personalised recommendations